
(1.1)(1.1)

(1.4)(1.4)

(1.3)(1.3)

(1.2)(1.2)

Lesson 22: Integrals and Series
restart;

with(Student[Calculus1]): with(IntegrationTools):

An oscillatory integral
We were looking at this improper integral, which converges due to rapid oscillation.

J := Int(x*cos(x^3), x=0..infinity);

Maple's symbolic value for this integral was
Jtrue := value(J);

We split the interval into two parts, did a change of variables on the infinite part, and then some
integrations by parts.

with(IntegrationTools);

S:=Split(J,1);

J1:= op(1,S); J2:= op(2,S);

V1:= evalf(ApproximateInt(x*cos(x^3),x=0..1,method=simpson,

partition=50));

J3:= Change(J2,x=t^(1/3));

J4:= Parts(J3,t^(-1/3));

(1.6)(1.6)

(1.5)(1.5)

J5:= Parts(J4,t^(-4/3));

for k from 0 to 7 do

 J5 := Parts(J5,t^(-k-7/3))

end do;

J6 := Change(J5,t=1/u);

This time the integrand has four continuous derivatives, so Simpson ought to work.
diff(u^(25/3)*cos(1/u),u$4);

Again, we can get around the fact that the integrand is undefined at by using piecewise.
g:= piecewise(u=0,0,cos(1/u)*u^(25/3));

(1.7)(1.7)

(1.6)(1.6)

(1.8)(1.8)

(1.5)(1.5)

A50:= evalf(ApproximateInt(g,u=0..1,method=simpson,partition=

50));

S50:= evalf(V1 + eval(J6,Int(cos(1/u)*u^(25/3),u=0..1)=A50));

A100:= evalf(ApproximateInt(g,u=0 .. 1,method=simpson,

partition=100));

S100:= evalf(V1 + eval(J6,Int(cos(1/u)*u^(25/3),u=0..1)=A100)

);

SR := (2^4*S100-S50)/(2^4-1);

evalf(Jtrue-SR);

Not very accurate. Let's calculate A100 and A200. I'll also redo V1 with partition = 100 and
partition=200; also increase Digits to reduce roundoff error.

Digits:= 15; V1100 := evalf(ApproximateInt(x*cos(x^3),x=0..1,

method=simpson,partition=100));

V1200:= evalf(ApproximateInt(x*cos(x^3),x=0..1,method=

simpson,partition=200));

A100:= evalf(ApproximateInt(g,u=0..1,method=simpson,

partition=100));

S100:= evalf(V1100 + eval(J6,Int(cos(1/u)*u^(25/3),u=0..1)=

A100));

A200:= evalf(ApproximateInt(g,u=0 .. 1,method=simpson,

partition=200));

S200:= evalf(V1200 + eval(J6,Int(cos(1/u)*u^(25/3),u=0..1)=

A200));

SR := (2^4*S200-S100)/(2^4-1);

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

(1.9)(1.9)

(1.10)(1.10)

evalf(Jtrue-SR);

evalf(J);
0.225686323237734

evalf(Jtrue-J);
0.

add, sum and Sum
Maple has three different commands for producing a sum: add, sum and Sum.
The simplest is add, which just adds a given finite number of terms.

restart;

add(t^j, j = 1..20);

Then there is sum, which looks for a formula for the sum. This can be used for both finite and
infinite sums, i.e. series.

sum(t^j, j = 1..20);

sum(t^j, j=1..n);

add(t^j, j=1..n);

Error, unable to execute add

sum(t^j, j=1..infinity);

If Maple can't find a formula it just returns the sum unevaluated.
sum(exp(-k^2), k=0..n);

sum(exp(-k^2), k=0..infinity);

For a finite sum, sum and add generally return the same result, but there can be problems with
"premature evaluation". Consider the following Vector:

V := <1,2,3,4,5>;

(2.2)(2.2)

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

(2.3)(2.3)

You want to add for n from 1 to 5. This works fine:

add(V[n], n=1..5);
15

But this doesn't:
sum(V[n],n=1..5);

Error, bad index into Vector

The problem is that sum starts out, like nearly all Maple procedures, by evaluating its inputs. In this
case the first one is V[n], so it tries to evaluate . But n is a symbolic variable. There is no such
thing (to Maple) as , just So it causes an error. This problem doesn't occur with
add, because that has special evaluation rules so it only evaluates its first input with integer values
substituted for the index variable.
And finally there is the inert form Sum.

Sum(t^j, j=1..20);

You can use value to turn Sum into sum:
value(%);

To get numerical values, you can use evalf. This can deal with an infinite Sum
(or a sum that Maple can't find a formula for) using numerical methods.

evalf(Sum(1/k^2,k=1..infinity));

sum(1/k^2, k=1..infinity); evalf(%);
1.644934067

1.644934068

sum(exp(-k^2),k=0..infinity); evalf(%);

1.386318602
It's not always successful, though.

evalf(Sum(1/(k^2+cos(k)),k=0..infinity));

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

Convergence of series
Consider an infinite series

The n'th partial sum of the series is

The main theoretical question about a series is whether or not it converges.
The sum of an infinite series is, by definition, the limit of the partial sums , i.e.

That limit must exist (as a finite number) in order for the sum to exist. Otherwise, we say the series
diverges.

In a case where the partial sums go to we might write , but strictly speaking we should

say this series diverges to

 Maple can sometimes figure this out, but not always. For a series that diverges to , it might give
a result of :

sum(1/k,k=1..infinity);

But not always:
sum(1/(k+ln(k)),k=1..infinity);

A series that diverges, but not to + or , will likely just return unevaluated:
sum((-2)^k,k=0..infinity);

But that's also what you get for a convergent series where Maple just doesn't know a formula for it.
And evalf sometimes returns a finite answer for divergent series.

evalf(%);
0.3333333333

There is an environment variable _EnvFormal that is supposed to make sum try harder to detect
divergent series when it's set to false. It isn't always reliable, though.
I'll do a restart so Maple won't remember previous results it got without _EnvFormal set to false.

restart; _EnvFormal:=false;

sum(1/(k+ln(k)),k=1..infinity);

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

evalf(Sum((-2)^n,n=0..infinity));

That answer of 1/3 wasn't complete nonsense. It is actually the continuation of a correct formula
outside the region where it is correct.

Sum(a^n, n=0..infinity) = sum(a^n, n=0..infinity);

That is true if . If we plug in :
eval(%,a=-2);

If _EnvFormal is set to true, Maple does even more of this sort of thing.
restart; _EnvFormal := true;

sum((-2)^n, n=0..infinity);
1
3

So how do we tell whether a series converges or diverges?
There are a number of "convergence tests" that can be used: the integral test, comparison test, ratio
test, root test and alternating series test are the ones that tend to be found in calculus texts. Maple
can be used as a tool in applying any of them. For example, the ratio test says the following:

If has a limit L < 1 as , then converges.

If it has a limit L > 1 (possibly), then the series diverges.
If L = 1 or there is no limit, the ratio test is inconclusive.

Maple can find limits with the limit command.

For example, let's test the series

x:= k -> 3^(k^2)/k!;

ratio := x(k+1)/x(k);

limit(ratio, k=infinity);

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

So this one diverges. It's not hard to see why.
simplify(ratio);

As , grows faster than , so the ratio goes to .

Next, I'll try

x := k -> k^k/(k!)^2;

ratio := x(k+1)/x(k);

limit(ratio,k=infinity);
0

ratio := simplify(ratio);

This one converges. What is the sum?
S:=sum(x(k),k=1..infinity);

Maple doesn't know a formula for it. We can get a numerical value using evalf.
evalf(S);

3.548128226

Approximating with the ratio test
Let's look at some partial sums of this series.

seq(evalf(Sum(x(k), k=1 .. N)), N = 1 .. 10);

This makes Maple's answer look plausible. The partial sums appear to be approaching
a limit that is approximately evalf's answer. If we want to approximate the sum, we could use the
partial sum for an appropriate . What N should we use to get the sum S
with an error of at most ?

We want to estimate , the "tail" of the series.

The ratio test gives us a clue for this: the ratio was

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

Note that goes to a limit of as . It is in fact less than

for every : = 1.

So the ratio is less than .

This means that for >= >= 10, we have the bound

And so for the tail of the series, we have an estimate:

By the way, the letter e is not anything special in Maple input. To get the constant e, you have to use
exp(1).
 The right side is a geometric series.

sum((exp(1)/11)^(k-N)*x(N),k=N+1 .. infinity);

EstimatedR := simplify(%);

We want this estimated R to be less than .
fsolve(EstimatedR = 10^(-10), N);

18.58532274
So N = 19 should do it.

evalf(eval(EstimatedR, N=19));

evalf(add(x(k),k=1..19));
3.548128226

evalf(S);
3.548128226

evalf(S-Sum(x(k),k=1..19), 20);

That was a series that converged very quickly. For series that converge slowly,
approximating the sum can be more difficult.

Maple objects introduced in this lesson

sum

(1.6)(1.6)

(2.1)(2.1)

(1.5)(1.5)

Sum
_EnvFormal

