Lesson 22: Integrals and Series

```
> restart;
```


An oscillatory integral

[We were looking at this improper integral, which converges due to rapid oscillation.
$>\operatorname{J}:=\operatorname{Int}\left(x^{*} \cos \left(x^{\wedge} 3\right), x=0\right.$..infinity);

$$
\begin{equation*}
J:=\int_{0}^{\infty} x \cos \left(x^{3}\right) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

EMaple's symbolic value for this integral was
$>$ Jtrue := value(J);

$$
\text { Jtrue }:=\frac{1}{6} \Gamma\left(\frac{2}{3}\right)
$$

We split the interval into two parts, did a change of variables on the infinite part, and then some integrations by parts.
> with(IntegrationTools);
[Change, CollapseNested, Combine, Expand, ExpandMultiple, Flip, GetIntegrand,
GetOptions, GetParts, GetRange, GetVariable, Parts, Split, StripOptions]
> S:=Split ($\mathrm{J}, 1$);

$$
S:=\int_{0}^{1} x \cos \left(x^{3}\right) \mathrm{d} x+\int_{1}^{\infty} x \cos \left(x^{3}\right) \mathrm{d} x
$$

$>\mathrm{J} 1:=\mathrm{op}(1, \mathrm{~S}) ; \mathrm{J} 2:=\mathrm{op}(2, \mathrm{~S})$;

$$
J 1:=\int_{0}^{1} x \cos \left(x^{3}\right) d x
$$

$$
\begin{equation*}
J 2:=\int_{1}^{\infty} x \cos \left(x^{3}\right) \mathrm{d} x \tag{1.2}
\end{equation*}
$$

$>$ V1:= evalf(ApproximateInt ($x^{*} \cos \left(x^{\wedge} 3\right), x=0 \ldots 1$, method=simpson, partition=50));

$$
\begin{equation*}
V 1:=0.4404076893 \tag{1.3}
\end{equation*}
$$

$>$ J3:= Change (J2, x=t^(1/3));

$$
J 3:=\int_{1}^{\infty} \frac{1}{3} \frac{\cos (t)}{t^{1 / 3}} \mathrm{~d} t
$$

$>\mathrm{J} 4:=\operatorname{Parts}\left(\mathrm{J} 3, \mathrm{t}^{\wedge}(-1 / 3)\right)$;

$$
\begin{equation*}
J 4:=-\frac{1}{3} \sin (1)-\left(\int_{1}^{\infty}\left(-\frac{1}{9} \frac{\sin (t)}{t^{4 / 3}}\right) \mathrm{d} t\right) \tag{1.4}
\end{equation*}
$$

$$
\begin{align*}
& >\text { J5: }=\operatorname{Parts}\left(\mathrm{J} 4, \mathrm{t}^{\wedge}(-4 / 3)\right) ; \\
& \qquad J 5:=-\frac{1}{3} \sin (1)+\frac{1}{9} \cos (1)+\int_{1}^{\infty}\left(-\frac{4}{27} \frac{\cos (t)}{t^{7 / 3}}\right) \mathrm{d} t \tag{1.5}\\
& \quad \begin{array}{l}
\text { for } \mathrm{k} \text { from } 0 \text { to } 7 \text { do } \\
\text { J5 }:=\operatorname{Parts}\left(\mathrm{J} 5, \mathrm{t}^{\wedge}(-\mathrm{k}-7 / 3)\right)
\end{array} \\
& \text { end do; }
\end{align*}
$$

$$
\begin{aligned}
& J 5:=-\frac{5}{27} \sin (1)+\frac{1}{9} \cos (1)-\left(\int_{1}^{\infty} \frac{28}{81} \frac{\sin (t)}{t^{10 / 3}} \mathrm{~d} t\right) \\
& J 5:=-\frac{5}{27} \sin (1)-\frac{19}{81} \cos (1)+\int_{1}^{\infty} \frac{280}{243} \frac{\cos (t)}{t^{13 / 3}} \mathrm{~d} t
\end{aligned}
$$

$$
J 5:=-\frac{325}{243} \sin (1)-\frac{19}{81} \cos (1)-\left(\int_{1}^{\infty}\left(-\frac{3640}{729} \frac{\sin (t)}{t^{16 / 3}}\right) \mathrm{d} t\right)
$$

$$
J 5:=-\frac{325}{243} \sin (1)+\frac{3469}{729} \cos (1)+\int_{1}^{\infty}\left(-\frac{58240}{2187} \frac{\cos (t)}{t^{19 / 3}}\right) \mathrm{d} t
$$

$$
J 5:=\frac{55315}{2187} \sin (1)+\frac{3469}{729} \cos (1)-\left(\int_{1}^{\infty} \frac{1106560}{6561} \frac{\sin (t)}{t^{22 / 3}} \mathrm{~d} t\right)
$$

$$
J 5:=\frac{55315}{2187} \sin (1)-\frac{1075339}{6561} \cos (1)+\int_{1}^{\infty} \frac{24344320}{19683} \frac{\cos (t)}{t^{25 / 3}} \mathrm{~d} t
$$

$$
J 5:=-\frac{23846485}{19683} \sin (1)-\frac{1075339}{6561} \cos (1)-\left(\int_{1}^{\infty}\left(-\frac{608608000}{59049} \frac{\sin (t)}{t^{28 / 3}}\right) \mathrm{d} t\right)
$$

$$
J 5:=-\frac{23846485}{19683} \sin (1)+\frac{598929949}{59049} \cos (1)+\int_{1}^{\infty}\left(-\frac{17041024000}{177147} \frac{\cos (t)}{t^{31 / 3}}\right) \mathrm{d} t
$$

$$
\text { L }>\text { J6 }:=\text { Change }(\mathrm{J} 5, \mathrm{t}=1 / \mathrm{u})
$$

$$
J 6:=-\frac{23846485}{19683} \sin (1)+\frac{598929949}{59049} \cos (1)-\frac{17041024000}{177147} \int_{0}^{1} \cos \left(\frac{1}{u}\right) u^{25 / 3} \mathrm{~d} u
$$

[This time the integrand has four continuous derivatives, so Simpson ought to work.

$$
\left[\begin{array}{l}
>\operatorname{diff}\left(u^{\wedge}(25 / 3) * \cos (1 / \mathrm{u}), \mathrm{u} \$ 4\right) ; \\
\cos \left(\frac{1}{u}\right) u^{1 / 3}-\frac{64}{3} \sin \left(\frac{1}{u}\right) u^{4 / 3}-\frac{608}{3} \cos \left(\frac{1}{u}\right) u^{7 / 3}+\frac{26752}{27} \sin \left(\frac{1}{u}\right) u^{10 / 3} \\
\quad+\frac{167200}{81} \cos \left(\frac{1}{u}\right) u^{13 / 3}
\end{array}\right.
$$

[Again, we can get around the fact that the integrand is undefined at $u=0$ by using piecewise.
$>g:=$ piecewise $\left(u=0,0, \cos (1 / u) * u^{\wedge}(25 / 3)\right)$;

$$
g:=\left\{\begin{array}{cc}
0 & u=0 \tag{1.6}\\
\cos \left(\frac{1}{u}\right) u^{25 / 3} & \text { otherwise }
\end{array}\right.
$$

A50:= evalf(ApproximateInt(g,u=0..1,method=simpson, partition= 50));

$$
A 50:=0.04637355746
$$

S50:= evalf(V1 + eval (J6, Int (cos (1/u)*u^(25/3), u=0..1)=A50)); S50 : = 0.224007

A100:= evalf(ApproximateInt ($\mathrm{g}, \mathrm{u}=0$.. 1,method=simpson, partition=100));

$$
A 100:=0.04637354102
$$

S100: = evalf(V1 + eval (J6, Int (cos (1/u) *u^(25/3), u=0..1) =A100));

$$
S 100:=0.225589
$$

$>\operatorname{SR}:=\left(2^{\wedge} 4 * S 100-S 50\right) /\left(2^{\wedge} 4-1\right)$; $S R:=0.2256944667$
$>$ evalf(Jtrue-SR);

$$
-0.0000081435
$$

Not very accurate. Let's calculate A100 and A200. I'll also redo V1 with partition $=100$ and partition=200; also increase Digits to reduce roundoff error.
$>$ Digits:= 15; V1100 := evalf(ApproximateInt($x^{*} \cos \left(x^{\wedge} 3\right), x=0 . .1$, method=simpson, partition=100));

$$
\text { Digits }:=15
$$

$V 1100:=0.440407691238742$
V1200: = evalf(ApproximateInt ($x^{*} \cos \left(x^{\wedge} 3\right), x=0.1$, method= simpson, partition=200));

$$
\begin{equation*}
V 1200:=0.440407691373017 \tag{1.8}
\end{equation*}
$$

$>$ A100:= evalf(ApproximateInt ($\mathrm{g}, \mathrm{u}=0.1$, method=simpson, partition=100));

$$
A 100:=0.0463735410758500
$$

S100: $=\operatorname{evalf}\left(\mathrm{V} 1100+\operatorname{eval}\left(\mathrm{J} 6, \operatorname{Int}\left(\cos (1 / \mathrm{u}) * u^{\wedge}(25 / 3), \mathrm{u}=0 \ldots 1\right)=\right.\right.$ A100));

$$
S 100:=0.22558103094
$$

A200:= evalf(ApproximateInt ($\mathrm{g}, \mathrm{u}=0$. . 1,method=simpson, partition=200));

$$
A 200:=0.0463735400497191
$$

S200: = evalf(V1200 + eval (J6, Int (cos (1/u)*u^(25/3), u=0..1) = A200));
$S 200:=0.22567974187$
$>\operatorname{SR}:=\left(2^{\wedge} 4 * \operatorname{S200}-\mathrm{S} 100\right) /\left(2^{\wedge} 4-1\right)$;

$$
S R:=0.225686322598667
$$

[> evalf(Jtrue-SR);

6.3906710^{-10}

0.225686323237734
(1.9)
0.

add, sum and Sum

Maple has three different commands for producing a sum: add, sum and Sum.
The simplest is add, which just adds a given finite number of terms.

```
> restart;
    add (t^j, j = 1. .20) ;
\(t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}+t^{15}+t^{16}+t^{17}+t^{18}+t^{19}\)
    \(+t^{20}\)
```

Then there is sum, which looks for a formula for the sum. This can be used for both finite and infinite sums, i.e. series.

```
\(>\operatorname{sum}\left(\mathrm{t}^{\wedge} \mathrm{j}, \mathrm{j}=1 . .20\right)\);
\(t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}+t^{15}+t^{16}+t^{17}+t^{18}+t^{19}\)
    \(+t^{20}\)
```

 \(>\operatorname{sum}\left(t^{\wedge} j, j=1 . . n\right)\);
 $$
\frac{t^{n+1}}{t-1}-\frac{t}{t-1}
$$

$\left[>\operatorname{add}\left(t^{\wedge} j, j=1 . . n\right)\right.$;
Error, unable to execute add
$>\operatorname{sum}\left(t^{\wedge} j, j=1 .\right.$. infinity);

$$
-\frac{t}{t-1}
$$

IIf Maple can't find a formula it just returns the sum unevaluated.
$>\operatorname{sum}\left(\exp \left(-k^{\wedge} 2\right), k=0 \ldots n\right)$;

$$
\operatorname{sum}\left(\exp \left(-k^{\wedge} 2\right), k=0 \ldots \text { infinity }\right) ;
$$

$$
\begin{aligned}
& \sum_{k=0}^{n} \mathrm{e}^{-k^{2}} \\
& \sum_{k=0}^{\infty} \mathrm{e}^{-k^{2}}
\end{aligned}
$$

For a finite sum, sum and add generally return the same result, but there can be problems with "premature evaluation". Consider the following Vector:
$>\mathrm{V}:=<1,2,3,4,5\rangle$;

$$
V:=\left[\begin{array}{l}
1 \tag{2.1}\\
2 \\
3 \\
4 \\
5
\end{array}\right]
$$

[You want to add V_{n} for n from 1 to 5 . This works fine:
[$>$ add (V[n], $n=1 . .5$);

$$
\begin{equation*}
15 \tag{2.2}
\end{equation*}
$$

But this doesn't:
$>\operatorname{sum}(\mathrm{V}[\mathrm{n}], \mathrm{n}=1 \ldots 5)$;
Error, bad index into Vector
The problem is that sum starts out, like nearly all Maple procedures, by evaluating its inputs. In this case the first one is $\mathbf{V}[\mathbf{n}]$, so it tries to evaluate V_{n}. But \mathbf{n} is a symbolic variable. There is no such thing (to Maple) as V_{n}, just $V_{1}, V_{2}, \ldots, V_{5}$. So it causes an error. This problem doesn't occur with add, because that has special evaluation rules so it only evaluates its first input with integer values substituted for the index variable.
And finally there is the inert form Sum.
$>\operatorname{Sum}\left(\right.$ t^j $\left.^{\prime}, j=1 . .20\right)$;

$$
\sum_{j=1}^{20} t^{j}
$$

YYou can use value to turn Sum into sum:
$>$ value (\%) ;
$t+t^{2}+t^{3}+t^{4}+t^{5}+t^{6}+t^{7}+t^{8}+t^{9}+t^{10}+t^{11}+t^{12}+t^{13}+t^{14}+t^{15}+t^{16}+t^{17}+t^{18}+t^{19}$
$\quad \quad+t^{20}$
To get numerical values, you can use evalf. This can deal with an infinite Sum
(or a sum that Maple can't find a formula for) using numerical methods.

$$
\left.\begin{array}{l}
>\operatorname{evalf(\operatorname {Sum}(1/\mathrm {k}^{\wedge }2,\mathrm {k}=1\ldots \text {infinity}));} \\
\operatorname{sum}\left(1 / \mathrm{k}^{\wedge} 2, \mathrm{k}=1 \ldots \text { infinity }\right) ; \text { evalf }(\%) ; \\
1.644934067 \\
\frac{1}{6} \pi^{2} \\
1.644934068
\end{array}\right] \begin{gathered}
\sum_{k=0}^{\infty} \mathrm{e}^{-k^{2}} \\
1.386318602
\end{gathered}
$$

Itt's not always successful, though.
$>\operatorname{evalf}\left(\operatorname{Sum}\left(1 /\left(k^{\wedge} 2+\cos (k)\right), k=0\right.\right.$..infinity));

$$
\sum_{k=0}^{\infty} \frac{1}{k^{2}+\cos (k)}
$$

Convergence of series

Consider an infinite series
$S=\sum_{k=0}^{\infty} a_{k}$
The n'th partial sum of the series is
$S_{n}=\sum_{k=0}^{n} a_{k}$
The main theoretical question about a series is whether or not it converges.
The sum of an infinite series is, by definition, the limit of the partial sums S_{n}, i.e.
$S=\lim _{n \rightarrow \infty} S_{n}$
That limit must exist (as a finite number) in order for the sum to exist. Otherwise, we say the series diverges.
In a case where the partial sums go to ∞ we might write $\sum_{k=0}^{\infty} a_{k}=\infty$, but strictly speaking we should say this series diverges to ∞.

Maple can sometimes figure this out, but not always. For a series that diverges to ∞, it might give a result of ∞ :
$>\operatorname{sum}(1 / \mathrm{k}, \mathrm{k}=1 \ldots$..infinity);
EBut not always:
$>\operatorname{sum}(1 /(k+\ln (k)), k=1 \ldots i n f i n i t y) ;$

$$
\sum_{k=1}^{\infty} \frac{1}{k+\ln (k)}
$$

[A series that diverges, but not to $+\infty$ or $-\infty$, will likely just return unevaluated:
$>\operatorname{sum}\left((-2)^{\wedge} k, k=0 . . i n f i n i t y\right) ;$

$$
\sum_{k=0}^{\infty}(-2)^{k}
$$

But that's also what you get for a convergent series where Maple just doesn't know a formula for it. And evalf sometimes returns a finite answer for divergent series.
$>$ evalf(\%);

$$
0.3333333333
$$

There is an environment variable_EnvFormal that is supposed to make sum try harder to detect divergent series when it's set to false. It isn't always reliable, though.
[I'll do a restart so Maple won't remember previous results it got without _EnvFormal set to false.
$>$ restart; _EnvFormal:=false;
$\operatorname{sum}(1 /(k+\ln (k)), k=1 . . i n f i n i t y) ;$
EnvFormal := false
∞
$\left.\left.>\operatorname{evalf(Sum((-2)}{ }^{\wedge} n, n=0 \ldots i n f i n i t y\right)\right) ;$
Float(undefined)
That answer of $1 / 3$ wasn't complete nonsense. It is actually the continuation of a correct formula outside the region where it is correct.
$>\operatorname{Sum}\left(a^{\wedge} n, n=0\right.$..infinity) $=\operatorname{sum}\left(a^{\wedge} n, n=0\right.$. infinity);

$$
\sum_{n=0}^{\infty} a^{n}=-\frac{1}{a-1}
$$

That is true if $|a|<1$. If we plug in $a=-2$:
$>$ eval (\%, a=-2) ;

$$
\sum_{n=0}^{\infty}(-2)^{n}=\frac{1}{3}
$$

[If _EnvFormal is set to true, Maple does even more of this sort of thing.
> restart; _EnvFormal := true;
_EnvFormal:= true
$>\operatorname{sum}\left((-2)^{\wedge} n, n=0\right.$. infinity); $\frac{1}{3}$
So how do we tell whether a series converges or diverges?
There are a number of "convergence tests" that can be used: the integral test, comparison test, ratio test, root test and alternating series test are the ones that tend to be found in calculus texts. Maple can be used as a tool in applying any of them. For example, the ratio test says the following:

If $\left|\frac{x_{n+1}}{x_{n}}\right|$ has a limit $\mathrm{L}<1$ as $n \rightarrow \infty$, then $\sum_{n=1}^{\infty} x_{n}$ converges.
If it has a limit $\mathrm{L}>1$ (possibly ∞), then the series diverges.
If $L=1$ or there is no limit, the ratio test is inconclusive.
Maple can find limits with the limit command.
For example, let's test the series $\sum_{k=1}^{\infty} \frac{3 k^{2}}{k!}$
$>\mathrm{x}:=\mathrm{k} \rightarrow 3^{\wedge}\left(\mathrm{k}^{\wedge} 2\right) / \mathrm{k}!$;

$$
x:=k \rightarrow \frac{3^{k^{2}}}{k!}
$$

[$>$ ratio $:=x(k+1) / x(k)$;

$$
\text { ratio }:=\frac{3^{(k+1)^{2}} k!}{(k+1)!3^{k^{2}}}
$$

> limit(ratio, k=infinity);

So this one diverges. It's not hard to see why.
$>$ simplify(ratio);

$$
\frac{39^{k}}{k+1}
$$

As $k \rightarrow \infty, 9^{k}$ grows faster than $k+1$, so the ratio goes to ∞.
Next, I'll try $\sum_{k=1}^{\infty} \frac{k^{k}}{k!^{2}}$
$>\mathrm{x}:=\mathrm{k} \rightarrow \mathrm{k}^{\wedge} \mathrm{k} /(\mathrm{k}!)^{\wedge} 2$;

$$
x:=k \rightarrow \frac{k^{k}}{k!^{2}}
$$

$>$ ratio : $=x(k+1) / x(k)$;

$$
\text { ratio }:=\frac{(k+1)^{k+1} k!^{2}}{(k+1)!^{2} k^{k}}
$$

> limit (ratio, k=infinity) ;
$>$ ratio := simplify(ratio);

$$
\text { ratio }:=(k+1)^{k-1} k^{-k}
$$

This one converges. What is the sum?
> S:=sum(x(k),k=1..infinity);

$$
S:=\sum_{k=1}^{\infty} \frac{k^{k}}{k!^{2}}
$$

Maple doesn't know a formula for it. We can get a numerical value using evalf.
$>$ evalf(S);

3.548128226

∇ Approximating with the ratio test

[Let's look at some partial sums of this series.
$>\operatorname{seq}($ evalf(Sum(x(k), k=1 .. N)), $\mathbf{N}=1 \ldots$ 10);
1., 2., 2.750000000, 3.194444444, 3.411458333, 3.501458333, 3.533879244, 3.544199224, 3.547141317, 3.547900723

This makes Maple's answer look plausible. The partial sums appear to be approaching a limit that is approximately evalf's answer. If we want to approximate the sum, we could use the partial sum for an appropriate N. What N should we use to get the $\operatorname{sum} S$ with an error of at most 10^{-10} ?

We want to estimate $R(N)=S-\left(\sum_{k=1}^{N} x(k)\right)=\sum_{k=N+1}^{\infty} x(k)$, the "tail" of the series.
The ratio test gives us a clue for this: the ratio was $\frac{x(k+1)}{x(k)}=(k+1)^{k-1} k^{-k}$

Note that $(k+1)^{k} k^{-k}=\left(1+\frac{1}{k}\right)^{k}$ goes to a limit of e as $k \rightarrow \infty$. It is in fact less than e for every $k \cdot \ln \left(\left(1+\frac{1}{k}\right)^{k}\right)=k \ln \left(1+\frac{1}{k}\right) \leq k \frac{1}{k}=1$.
So the ratio is less than $\frac{\mathrm{e}}{k+1}$.
This means that for $k>=N>=10$, we have the bound $0 \leq x(k) \leq\left(\frac{\mathrm{e}}{11}\right)^{k-N} x(N)$
And so for the tail of the series, we have an estimate:
$0 \leq R(N) \leq \sum_{k=N+1}^{\infty}\left(\frac{\mathrm{e}}{11}\right)^{k-N} x(N)$
By the way, the letter \mathbf{e} is not anything special in Maple input. To get the constant \mathbf{e}, you have to use $\exp (1)$.
The right side is a geometric series.
$>\operatorname{sum}\left((\exp (1) / 11)^{\wedge}(k-N) * x(N), k=N+1 \ldots\right.$ infinity);

$$
-\frac{11\left(\frac{1}{11} \mathrm{e}\right)^{-N} N^{N}\left(\frac{1}{11} \mathrm{e}\right)^{N+1}}{N!^{2}(\mathrm{e}-11)}
$$

$$
\left[\begin{array}{l}
>\text { EstimatedR }:=\text { simplify }(\%) ; \\
\quad \text { Estimated }:=-\frac{\mathrm{e} N^{N}}{N!^{2}(\mathrm{e}-11)}
\end{array}\right.
$$

We want this estimated R to be less than 10^{-10}.
$>$ fsolve (EstimatedR $\left.=10^{\wedge}(-10), \mathrm{N}\right)$; 18.58532274

So $\mathrm{N}=19$ should do it.
$>$ evalf(eval (EstimatedR, $N=19)$);
4.38836972410^{-11}
$>\operatorname{evalf}(\operatorname{add}(x(k), k=1 . .19))$;
3.548128226
$>$ evalf(S);
3.548128226
$>$ evalf(S-Sum(x(k),k=1..19), 20);
2.0259052410^{-11}

That was a series that converged very quickly. For series that converge slowly, approximating the sum can be more difficult.

Maple objects introduced in this lesson

sum

Sum

EnvFormal

