Lesson 20: Newton-Cotes Rules

```
> restart;
with(Student[Calculus1]):
```


Errors for Newton-Cotes rules with fixed \mathbf{n}.

I want to look at the errors in Newton-Cotes rules with different orders, all using the same n, for some functions on the interval 0 .. 1 .
I'll take n to be 36, so the order k can be any factor of 36 . These are the possibilities.

$$
\begin{array}{r}
>\mathrm{K}:=[1,2,3,4,6,9,12,18,36] ; \\
=\quad K:=[1,2,3,4,6,9,12,18,36]
\end{array}
$$

First I'll use our function $f(x)=\frac{1}{1+x}$.
> Digits:= 30 :
$\mathrm{J}:=$ int $(1 /(1+x), x=0.1):$
seq(evalf(J - ApproximateInt (1/(1+x),x=0..1,method= newtoncotes[K[j]],
partition=36/K[j])), j=1..9);
$-0.000048220659074225432544874437,-1.856967590158399777759410^{-8}$,
$-4.170193141831502495747410^{-8},-1.1291685508126363460010^{-10}$,
$-1.78265515685931910410^{-12},-1.0470400562916331110^{-13}$,
$-1.4750933276756310^{-16},-1.2486298366710^{-19},-3.383610^{-26}$
For this function, the higher-order rules turned out to be better. But if we take an f whose higher derivatives grow faster, that might not be true.
$>f:=x \rightarrow 1 /\left(x^{\wedge} 2+1 / 400\right):$
$\mathrm{J}:=\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0 . \mathrm{l})$:
seq (evalf(J - ApproximateInt ($\mathrm{f}(\mathrm{x}$) , $\mathrm{x}=0$. . 1, method=newtoncotes [K [j]],
partition=36/k[j])), j=1..9);
$-0.0006419522691679159621472123,0.0725441148897016001087090498$,
$0.1844734434474920562223906012,0.0091949923915456824776657040$, $-0.0365123673823126587492923243,-0.0518280077728373653654982713$, $-0.0720167551380369955836442934,-0.0560179975592538805248659975$, 0.0038520798802296260016578692

Here the best answer was obtained with $\mathrm{k}=1$, i.e. the Trapezoid rule.

When higher order is worse

Here's an innocent-looking function where, taking partition $=\mathbf{1}($ so $n=k)$, the errors tend to get worse as n and k increase.

```
>f:= x -> 1/(x^2+1); J:= int(f(x),x=-5..5);
    seq(evalf(J - ApproximateInt (f (x),x=-5 . . 5,method=newtoncotes
    [k],
    partition=1)), k=1..30);
```

$$
\begin{aligned}
& f:=x \rightarrow \frac{1}{x^{2}+1} \\
& J:=2 \arctan (5)
\end{aligned}
$$

$2.36218614927464710633792846826,-4.04807026098176315007232794199$, $0.66535357008912674434697824202,0.37279622885024392331405578922$, $0.43910922619772402941485154519,-1.12364713958076803078255133975$, -0.15219287585834714013072723603, 1.24631262676212044443367320301, $0.34818363604819714486943740868,-1.92649902176346510824487434983$, $-0.49797140638855296573330858472,3.05973804964349848113316200580$, $0.82700431705748154340555620008,-5.15274310696150529628600870298$, - 1.40875745880984958108897822544, 8.98823884864786464489728400809, 2.48629209243840486298527849247, -16.1298197563551008484861397561, -4.49922455162308315054814008638, 29.5963536204131431041723885357, 8.31123430387733930341693806385, -55.2971311248853536477397923599, - 15.6133901066921803820437948677, 104.874552571714577823391763842, 29.7461069336908708608183363509, -201.424202489608387121977833586, -57.3494404584588707652736239613, 391.042086474141033243576598585, 111.701292496576266882524734562, -766.242852643854324635408907989

The Newton-Cotes rule has a close connection to interpolation by polynomials. Consider the Newton-Cotes rule of order k with $n=k$. The result depends on the value of your function f at the $k+1$ equally spaced points x_{0}, \ldots, x_{k} If f was a polynomial of degree at most k, this result would be correct. So what the rule gives you is the integral for a polynomial of degree at most k that agrees with f at those points. We say that polynomial interpolates the values of f at x_{0}, \ldots, x_{k} If partition >1, the Newton-Cotes rule does this on each partition of k intervals. ApproximateInt with the option output=plot shows you your function f and the interpolating polynomials on each interval.
$>$ ApproximateInt (1/ ($\left.x^{\wedge} 2+1\right), x=-5.5$, method=newtoncotes [4], partition=1,output=plot);

An Approximation of the Integral of

$$
f(x)=1 /\left(x^{\wedge} 2+1\right)
$$

on the Interval $[-5,5]$
Using Newton Cotes' Rule of Order 4
Area: 2.37400530503978779840848806366

Here's an animation of this for different k with partition=1. For technical reasons, the animate command doesn't work here. However, as we saw in Lesson 15 there's another way to produce an animation, using the display command: you give it a list of plots (one for each frame), and the option insequence=true.

```
> with(plots):
    display ([seq(ApproximateInt (1/ (x^2+1) , x=-5. .5,method=
    newtoncotes[k],partition=1, output=plot),k=1..20)],
    insequence=true);
```

An Approximation of the Integral of

$$
f(x)=1 /\left(x^{\wedge} 2+1\right)
$$

on the Interval $[-5,5]$
Using Newton Cotes' Rule of Order 1
Area: . 384615384615384615384615384615

$\overline{=}>$ display ([seq(ApproximateInt $(1 /(x+1), x=0 \ldots 1$, method=newtoncotes [k],partition=1, output=plot), $k=1 . .20)]$,insequence=true);

An Approximation of the Integral of

$$
f(x)=1 /(1+x)
$$

on the Interval $[0,1]$
Using Newton Cotes' Rule of Order 1
Area: . 750000000000000000000000000000

Partitions: 1

Richardson extrapolation

Suppose J is some quantity you want to calculate, and you have available some approximations $A(n)$. Often you know something about how well $A(n)$ approximates J, e.g.
$J=A(n)+\mathrm{O}\left(n^{-p}\right)$. That is, the error in approximating J by $A(n)$ is less than some constant times
n^{-p}. But let's suppose you have more, say $J=A(n)+C n^{-p}+\mathrm{O}\left(n^{-p-\varepsilon}\right)$ for some $\varepsilon>0$ (and typically $\varepsilon=1$ or 2). Thus the error is approximately some constant times n^{-p}. Unfortunately you don't know the constant C. If you did know it, you could make a better approximation by using $A(n)+C n^{-p}$ instead of $A(n)$.
Richardson extrapolation remedies this difficulty by looking at two different $A(n)$. We'll get both a better approximation for J and some idea of the error in $A(n)$. Suppose we calculate $A(n)$ and $A\left(\frac{n}{2}\right)$.
> J:= 'J':
e1:= J = A(n) + C*n^(-p) + O(n^(-p-epsilon));
$e 1:=J=A(n)+C n^{-p}+\mathrm{O}\left(n^{-p-\varepsilon}\right)$
$\lceil>e 2:=\operatorname{eval}(e 1, n=n / 2) ;$

$$
\begin{equation*}
e 2:=J=A\left(\frac{1}{2} n\right)+C\left(\frac{1}{2} n\right)^{-p}+\mathrm{O}\left(\left(\frac{1}{2} n\right)^{-p-\varepsilon}\right) \tag{3.2}
\end{equation*}
$$

TThink of these as two equations in the two unknowns J and C.
$>$ S:= solve(\{e1,e2\},\{J, C\});
$S:=\left\{C=\frac{A(n)-\mathrm{O}\left(\left(\frac{1}{2} n\right)^{-p-\varepsilon}\right)+\mathrm{O}\left(n^{-p-\varepsilon}\right)-A\left(\frac{1}{2} n\right)}{\left(\frac{1}{2} n\right)^{-p}-n^{-p}}, J\right.$
$\left.=\frac{A(n)\left(\frac{1}{2} n\right)^{-p}-n^{-p} \mathrm{O}\left(\left(\frac{1}{2} n\right)^{-p-\varepsilon}\right)-n^{-p} A\left(\frac{1}{2} n\right)+\mathrm{O}\left(n^{-p-\varepsilon}\right)\left(\frac{1}{2} n\right)^{-p}}{\left(\frac{1}{2} n\right)^{-p}-n^{-p}}\right\}$
If we neglect the O terms:
$>\operatorname{SR}:=$ simplify (eval (S,O=0));

$$
S R:=\left\{C=-\frac{\left(-A(n)+A\left(\frac{1}{2} n\right)\right) n^{p}}{2^{p}-1}, J=\frac{A(n) 2^{p}-A\left(\frac{1}{2} n\right)}{2^{p}-1}\right\}
$$

$>C R:=\operatorname{eval}(C, S R) ; J R:=\operatorname{eval}(J, S R)$;

$$
\begin{gathered}
C R:=-\frac{\left(-A(n)+A\left(\frac{1}{2} n\right)\right) n^{p}}{2^{p}-1} \\
J R
\end{gathered}:=\frac{A(n) 2^{p}-A\left(\frac{1}{2} n\right)}{2^{p}-1}
$$

$>$ simplify (CR-eval (C,S));

$$
\frac{n^{p}\left(\mathrm{O}\left(2^{p+\varepsilon} n^{-p-\varepsilon}\right)-\mathrm{O}\left(n^{-p-\varepsilon}\right)\right)}{2^{p}-1}
$$

So the difference between the Richardson value C_{R} and the true C is $\mathrm{O}\left(n^{-\varepsilon}\right)$.
$>$ simplify (JR-eval (J, S));

$$
-\frac{-\mathrm{O}\left(2^{p+\varepsilon} n^{-p-\varepsilon}\right)+\mathrm{O}\left(n^{-p-\varepsilon}\right) 2^{p}}{2^{p}-1}
$$

The difference between the Richardson value J_{R} and the true J is $\mathrm{O}\left(n^{-p-\varepsilon}\right)$.
When n is large, the main contribution to the error in $A(n)$ is $C n^{-p}$. If we approximate that error as $C_{R} n^{-p}$, how far off are we (i.e. what is the error in our approximation of the error in our approximation)?

$$
\begin{array}{r}
>\operatorname{simplify}\left(\text { eval }\left(J-\mathbf{A}(\mathrm{n})-\mathbf{C R} \mathrm{n}^{\wedge}(-\mathrm{p}), \mathbf{S}\right)\right) ; \\
\frac{-\mathrm{O}\left(2^{p+\varepsilon} n^{-p-\varepsilon}\right)+\mathrm{O}\left(n^{-p-\varepsilon}\right) 2^{p}}{2^{p}-1}
\end{array}
$$

This is $\mathrm{O}\left(n^{-p-\varepsilon}\right)$. As long as $C \neq 0$, that's much smaller than the actual error when n is large. So this should be a good approximation for the error in $A(n)$.
$>$ simplify $\left(C R * n^{\wedge}(-p)\right)$;

$$
\begin{equation*}
-\frac{-A(n)+A\left(\frac{1}{2} n\right)}{2^{p}-1} \tag{3.4}
\end{equation*}
$$

We don't know a good approximation for the error in our improved approximation J_{R}, only that it is $\mathrm{O}\left(n^{-p-\varepsilon}\right)$. But $C_{R} n^{-p}$ should be a fairly conservative estimate for it, at least if n is large.

A closer look at the error in Trapezoid

Applying Richardson to Trapezoid

I want to apply Richardson extrapolation to the Trapezoid rule.

$$
\begin{align*}
& >\mathrm{h}:=\mathrm{n} \rightarrow(\mathrm{~b}-\mathrm{a}) / \mathrm{n} \text { : } \\
& >x:=(k, n) \rightarrow a+k * h(n): \\
& \mathrm{a}:=0: \mathrm{b}:=1: \\
& >\mathrm{T}:=\mathrm{n} \rightarrow \operatorname{add}((\mathrm{f}(\mathrm{X}(\mathrm{k}-1, \mathrm{n}))+\mathrm{f}(\mathrm{X}(\mathrm{k}, \mathrm{n}))) / 2 \text { * } \mathrm{h}(\mathrm{n}), \mathrm{k}=1 \ldots \mathrm{n}) \text {; } \\
& \mathrm{J}:=\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a} . \mathrm{b}) \text {; } \\
& T:=n \rightarrow \operatorname{add}\left(\frac{1}{2}(f(X(k-1, n))+f(X(k, n))) h(n), k=1 . . n\right) \\
& J:=\int_{0}^{1} f(x) \mathrm{d} x \tag{5.1}
\end{align*}
$$

The Trapezoid Rule $T(n)$ has error $\frac{c_{2}}{n^{2}}+\mathrm{O}\left(\frac{1}{n^{4}}\right)$, so the improved approximation using Richardson extrapolation would be
$>\operatorname{TR}[1]:=\mathrm{n} \rightarrow\left(2^{\wedge} 2^{*} T(\mathrm{n})-\mathrm{T}(\mathrm{n} / 2)\right) /\left(2^{\wedge} 2-1\right)$;

$$
\begin{equation*}
T R_{1}:=n \rightarrow \frac{4}{3} T(n)-\frac{1}{3} T\left(\frac{1}{2} n\right) \tag{5.2}
\end{equation*}
$$

[I'm calling it $T R_{1}$ instead of just TR because, as we'll see, this will be the start of a sequence $T R_{k}$ $>\operatorname{TR}[1]$ (2);

$$
\begin{equation*}
\frac{1}{6} f(0)+\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(1) \tag{5.3}
\end{equation*}
$$

That should look familiar. $T R_{1}$ is Simpson's rule.
If T(n) has error $\sum_{k=1}^{N} \frac{c_{2 k}}{n^{2 k}}+\mathrm{O}\left(\frac{1}{n^{2 N+2}}\right)$, what about $T R_{1}$? It's not hard to see that this will have error $\sum_{k=2}^{N} \frac{c_{2 k}^{\prime}}{n^{2 k}}+\mathrm{O}\left(\frac{1}{n^{2 N+2}}\right)$ (where $c_{2 k}^{\prime}$ are other constants). So Richardson extrapolation improves $T R_{1}$ to this:
$>\operatorname{TR}[2]:=\mathrm{n}->\left(2^{\wedge} 4 * \operatorname{TR}[1](\mathrm{n})-\operatorname{TR}[1](\mathrm{n} / 2)\right) /\left(2^{\wedge} 4-1\right) ;$

$$
\begin{equation*}
T R_{2}:=n \rightarrow \frac{16}{15} T R_{1}(n)-\frac{1}{15} T R_{1}\left(\frac{1}{2} n\right) \tag{5.4}
\end{equation*}
$$

$>\operatorname{TR}[2](4)$;

$$
\begin{equation*}
\frac{7}{90} f(0)+\frac{16}{45} f\left(\frac{1}{4}\right)+\frac{2}{15} f\left(\frac{1}{2}\right)+\frac{16}{45} f\left(\frac{3}{4}\right)+\frac{7}{90} f(1) \tag{5.5}
\end{equation*}
$$

[This turns out to be the same as Newton-Cotes rule of order 4.

$$
\begin{align*}
& >\text { with (Student[Calculus1]): } \\
& \text { ApproximateInt(f(x), x=a..b, partition=1, } \\
& \text { method=newtoncotes [4]); } \\
& \frac{7}{90} f(0)+\frac{16}{45} f\left(\frac{1}{4}\right)+\frac{2}{15} f\left(\frac{1}{2}\right)+\frac{16}{45} f\left(\frac{3}{4}\right)+\frac{7}{90} f(1) \tag{5.6}\\
& {\left[\text { This should have error } \sum_{k=3}^{N} \frac{c^{\prime \prime}{ }_{2 k}}{n^{2 k}}+\mathrm{O}\left(\frac{1}{n^{2 N+2}}\right)\right. \text {. }} \\
& >\operatorname{TR}[3]:=\mathrm{n} \rightarrow\left(2^{\wedge} 6 * T R[2](\mathrm{n})-\operatorname{TR}[2](\mathrm{n} / 2)\right) /\left(2^{\wedge} 6-1\right) \text {; } \\
& T R_{3}:=n \rightarrow \frac{64}{63} T R_{2}(n)-\frac{1}{63} T R_{2}\left(\frac{1}{2} n\right) \tag{5.7}\\
& >\operatorname{TR}[3] \text { (8) ; } \\
& \frac{31}{810} f(0)+\frac{512}{2835} f\left(\frac{1}{8}\right)+\frac{176}{2835} f\left(\frac{1}{4}\right)+\frac{512}{2835} f\left(\frac{3}{8}\right)+\frac{218}{2835} f\left(\frac{1}{2}\right) \tag{5.8}\\
& +\frac{512}{2835} f\left(\frac{5}{8}\right)+\frac{176}{2835} f\left(\frac{3}{4}\right)+\frac{512}{2835} f\left(\frac{7}{8}\right)+\frac{31}{810} f(1)
\end{align*}
$$

This one is not the same as the Newton-Cotes rule of order 8 , although they evaluate f at the same points.
> ApproximateInt(f(x), x=a..b, partition=1,
method=newtoncotes[8]);

$$
\begin{align*}
& \frac{989}{28350} f(0)+\frac{2944}{14175} f\left(\frac{1}{8}\right)-\frac{464}{14175} f\left(\frac{1}{4}\right)+\frac{5248}{14175} f\left(\frac{3}{8}\right)-\frac{454}{2835} f\left(\frac{1}{2}\right) \tag{5.9}\\
& +\frac{5248}{14175} f\left(\frac{5}{8}\right)-\frac{464}{14175} f\left(\frac{3}{4}\right)+\frac{2944}{14175} f\left(\frac{7}{8}\right)+\frac{989}{28350} f(1)
\end{align*}
$$

We could go farther with these "TR rules", but we won't. The correct name is "Romberg Integration".

$T R_{3}$ versus newtoncotes ${ }_{8}$

[$T R_{1}$ was Simpson's Rule (the Newton-Cotes rule of order 2), and $T R_{2}$ was the Newton-Cotes rule of order 4, but $T R_{3}$ is not a Newton-Cotes rule. Which is better, $T R_{3}$ or the Newton-Cotes rule of order 8 ?
On the one hand, $T R_{3}$ should have error $\mathrm{O}\left(n^{-8}\right)$, while newtoncotes ${ }_{8}$ should have $\mathrm{O}\left(n^{-10}\right)$. So newtoncotes ${ }_{8}$ should be better for large n. On the other hand, if n is fairly small $T R_{3}$ might be as good or better. Here is our function from last time that was bad for the Newton-Cotes rules with partition=1.

```
> f := x -> 1/((8*x-4)^2+1);
    evalf(J-TR[3](8));
    evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes [8],
    partition=1));
\[
f:=x \rightarrow \frac{1}{(8 x-4)^{2}+1}
\]
\[
0.008503902378259283398329877305
\]
\[
\begin{equation*}
0.088817627868455361829702426324 \tag{6.1}
\end{equation*}
\]
So in this particular case \(T R_{3}\) is much better. If we used a larger \(n\), Newton-Cotes might win.
\[
>\operatorname{seq}([\operatorname{evalf}(J-T R[3](8 * k))
\]
    evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes[8],
    partition=k))], k=1..10);
[0.008503902378259283398329877305, 0.088817627868455361829702426324], [
    -0.000285624142523695725955841187, -0.000623764984166393543784739424], [
    -0.000204883478822395979713756790, 0.000572494430453664642795487508], [
    -0.000029727163046928359760280158, 0.000009360917377241639161280457], [
    -0.000014334144057919530076745403, 0.000011222845549916056796665309],
    [6.35591878056944622021186 10-7,9.98784313900962525216486 10-7 ], [
    -0.000001520348681035074090446262, 5.01169142327219992932987 10-7}]
    [4.37170182374160065048074 10-7, - 1.588471646387363761220 10-9], [
    -2.52547826016599896396935 10-7, 4.5158941472082878856508 10-8}]
    [1.04081643684555957157445 10-7,-1.1096585987219955417995 10-8}
```


Maple objects introduced in this lesson

```
ApproximateInt(..., output=plot) in Student[Calculus1] package
Rule[parts,...] in Student[Calculus1] package
op
```

