
(1.1)(1.1)

Lesson 20: Newton-Cotes Rules
restart;

with(Student[Calculus1]):

Errors for Newton-Cotes rules with fixed n.
I want to look at the errors in Newton-Cotes rules with different orders, all using the same n, for
some functions on the interval 0 .. 1.
I'll take n to be 36, so the order k can be any factor of 36. These are the possibilities.

K := [1,2,3,4,6,9,12,18,36];

First I'll use our function .

Digits:= 30:

J:= int(1/(1+x),x=0..1):

seq(evalf(J - ApproximateInt(1/(1+x),x=0..1,method=

newtoncotes[K[j]],

partition=36/K[j])), j=1..9);

For this function, the higher-order rules turned out to be better. But if we take an f whose higher
derivatives grow faster, that might not be true.

f:= x -> 1/(x^2 + 1/400):

J:= int(f(x),x=0..1):

seq(evalf(J - ApproximateInt(f(x),x=0..1,method=newtoncotes[K

[j]],

partition=36/K[j])), j=1..9);

Here the best answer was obtained with k = 1, i.e. the Trapezoid rule.

When higher order is worse
Here's an innocent-looking function where, taking partition = 1 (so n = k), the errors tend to get
worse as n and k increase.

f:= x -> 1/(x^2+1); J:= int(f(x),x=-5..5);

seq(evalf(J - ApproximateInt(f(x),x=-5..5,method=newtoncotes

[k],

partition=1)), k=1..30);

The Newton-Cotes rule has a close connection to interpolation by polynomials. Consider the
Newton-Cotes rule of order k with n = k. The result depends on the value of your function f at the

 equally spaced points ,..., . If f was a polynomial of degree at most k, this result would be
correct. So what the rule gives you is the integral for a polynomial of degree at most k that agrees
with f at those points. We say that polynomial interpolates the values of f at . If partition > 1,
the Newton-Cotes rule does this on each partition of k intervals. ApproximateInt with the option
output=plot shows you your function f and the interpolating polynomials on each interval.

ApproximateInt(1/(x^2+1),x=-5..5,method=newtoncotes[4],

partition=1,output=plot);

f(x)

 Area: 2.37400530503978779840848806366

 Partitions: 1

x
0 2 4

1

An Approximation of the Integral of
f(x) = 1/(x^2+1)

on the Interval [-5, 5]
Using Newton Cotes' Rule of Order 4

Here's an animation of this for different k with partition=1. For technical reasons, the animate
command doesn't work here. However, as we saw in Lesson 15 there's another way to produce an
animation, using the display command: you give it a list of plots (one for each frame), and the
option insequence=true.

with(plots):

display([seq(ApproximateInt(1/(x^2+1),x=-5..5,method=

newtoncotes[k],partition=1, output=plot),k=1..20)],

insequence=true);

f(x)

 Area: .384615384615384615384615384615

 Partitions: 1

x
0 2 4

1

An Approximation of the Integral of
f(x) = 1/(x^2+1)

on the Interval [-5, 5]
Using Newton Cotes' Rule of Order 1

display([seq(ApproximateInt(1/(x+1),x=0..1,method=newtoncotes

[k],partition=1, output=plot),k=1..20)],insequence=true);

(3.2)(3.2)

(3.1)(3.1)

f(x)

 Area: .750000000000000000000000000000

 Partitions: 1

x
1

0

An Approximation of the Integral of
f(x) = 1/(1+x)

on the Interval [0, 1]
Using Newton Cotes' Rule of Order 1

Richardson extrapolation
Suppose is some quantity you want to calculate, and you have available some approximations

. Often you know something about how well approximates , e.g.
. That is, the error in approximating J by is less than some constant times

. But let's suppose you have more, say for some > 0 (and
typically = 1 or 2). Thus the error is approximately some constant times . Unfortunately you
don't know the constant . If you did know it, you could make a better approximation by using

 instead of .
Richardson extrapolation remedies this difficulty by looking at two different . We'll get both a
better approximation for and some idea of the error in . Suppose we calculate and

.

J:= 'J':

e1:= J = A(n) + C*n^(-p) + O(n^(-p-epsilon));

e2:= eval(e1,n=n/2);

(3.2)(3.2)

(3.3)(3.3)

Think of these as two equations in the two unknowns J and C.
S:= solve({e1,e2},{J, C});

If we neglect the O terms:
SR := simplify(eval(S,O=0));

CR:= eval(C,SR); JR:= eval(J,SR);

simplify(CR-eval(C,S));

So the difference between the Richardson value and the true C is .

simplify(JR-eval(J,S));

The difference between the Richardson value and the true J is .

When n is large, the main contribution to the error in is . If we approximate that error as
, how far off are we (i.e. what is the error in our approximation of the error in our

approximation)?
simplify(eval(J - A(n) - CR*n^(-p),S));

(5.2)(5.2)

(5.3)(5.3)

(3.2)(3.2)

(5.1)(5.1)

(3.4)(3.4)

This is . As long as , that's much smaller than the actual error when is large. So
this should be a good approximation for the error in .

simplify(CR*n^(-p));

We don't know a good approximation for the error in our improved approximation , only that it is

. But should be a fairly conservative estimate for it, at least if is large.

A closer look at the error in Trapezoid

Applying Richardson to Trapezoid
I want to apply Richardson extrapolation to the Trapezoid rule.

h := n -> (b-a)/n:

X := (k,n) -> a + k*h(n):

a:= 0: b:= 1:

T := n -> add((f(X(k-1,n)) + f(X(k,n)))/2 * h(n), k=1..n);

J := int(f(x),x=a..b);

The Trapezoid Rule has error , so the improved approximation using

Richardson extrapolation would be
TR[1] := n -> (2^2*T(n) - T(n/2))/(2^2-1);

I'm calling it instead of just TR because, as we'll see, this will be the start of a sequence

TR[1](2);

That should look familiar. is Simpson's rule.

If T(n) has error , what about ? It's not hard to see that this will have

error (where are other constants). So Richardson extrapolation

improves to this:

(5.6)(5.6)

(5.7)(5.7)

(5.9)(5.9)

(5.5)(5.5)

(5.4)(5.4)

(3.2)(3.2)

(5.8)(5.8)

TR[2]:= n -> (2^4*TR[1](n)-TR[1](n/2))/(2^4-1);

TR[2](4);

This turns out to be the same as Newton-Cotes rule of order 4.
with(Student[Calculus1]):

ApproximateInt(f(x), x=a..b, partition=1,

method=newtoncotes[4]);

This should have error

TR[3] := n -> (2^6*TR[2](n)-TR[2](n/2))/(2^6-1);

TR[3](8);

This one is not the same as the Newton-Cotes rule of order 8, although they evaluate f at the same
points.

ApproximateInt(f(x), x=a..b, partition=1,

method=newtoncotes[8]);

We could go farther with these "TR rules", but we won't. The correct name is "Romberg
Integration".

 versus

 was Simpson's Rule (the Newton-Cotes rule of order 2), and was the Newton-Cotes rule of
order 4, but is not a Newton-Cotes rule. Which is better, or the Newton-Cotes rule of order
8?
On the one hand, should have error , while should have . So

 should be better for large . On the other hand, if is fairly small might be as
good or better. Here is our function from last time that was bad for the Newton-Cotes rules with
partition=1.

(6.2)(6.2)

(5.4)(5.4)

(6.1)(6.1)

(3.2)(3.2)

f := x -> 1/((8*x-4)^2+1);

evalf(J-TR[3](8));

evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes[8],

partition=1));

0.008503902378259283398329877305
0.088817627868455361829702426324

So in this particular case is much better. If we used a larger n, Newton-Cotes might win.

seq([evalf(J-TR[3](8*k)),

evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes[8],

partition=k))], k=1..10);

Maple objects introduced in this lesson
ApproximateInt(..., output=plot) in Student[Calculus1] package
Rule[parts,...] in Student[Calculus1] package
op

