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Lesson 20: Newton-Cotes Rules
restart;

with(Student[Calculus1]):

Errors for Newton-Cotes rules with fixed n.
I want to look at the errors in Newton-Cotes rules with different orders, all using the same n, for 
some functions on the interval 0 .. 1.
I'll take n to be 36, so the order k can be any factor of 36.  These are the possibilities.

K := [1,2,3,4,6,9,12,18,36];

First I'll use our function .

Digits:= 30: 

J:= int(1/(1+x),x=0..1):

seq(evalf(J - ApproximateInt(1/(1+x),x=0..1,method=

newtoncotes[K[j]],

partition=36/K[j])), j=1..9);

For this function, the higher-order rules turned out to be better.  But if we take an f whose higher 
derivatives grow faster, that might not be true.

f:= x -> 1/(x^2 + 1/400):

J:= int(f(x),x=0..1):

seq(evalf(J - ApproximateInt(f(x),x=0..1,method=newtoncotes[K

[j]],

partition=36/K[j])), j=1..9);

Here the best answer was obtained with k = 1, i.e. the Trapezoid rule. 

When higher order is worse
Here's an innocent-looking function where, taking partition = 1 (so n = k), the errors tend to get 
worse as n and k increase.



f:= x -> 1/(x^2+1); J:= int(f(x),x=-5..5);

seq(evalf(J - ApproximateInt(f(x),x=-5..5,method=newtoncotes

[k],

partition=1)), k=1..30);

The Newton-Cotes rule has a close connection to interpolation by polynomials.  Consider the 
Newton-Cotes rule of order k with n = k.  The result depends on the value of your function f at the 

 equally spaced points  ,..., .  If f was a polynomial of degree at most k, this result would be 
correct.  So what the rule gives you is the integral for a polynomial of degree at most k that agrees 
with f at those points.  We say that polynomial interpolates the values of f at .  If partition > 1,
the Newton-Cotes rule does this on each partition of k intervals.  ApproximateInt with the option
output=plot shows you your function f and the interpolating polynomials on each interval. 

ApproximateInt(1/(x^2+1),x=-5..5,method=newtoncotes[4],

partition=1,output=plot);



f(x)

   Area: 2.37400530503978779840848806366

     Partitions: 1
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An Approximation of the Integral of
f(x) = 1/(x^2+1)

on the Interval [-5, 5]
Using Newton Cotes' Rule of Order 4

Here's an animation of this for different k with partition=1.  For technical reasons, the animate 
command doesn't work here.  However, as we saw in Lesson 15 there's another way to produce an 
animation, using the display command: you give it a list of plots (one for each frame), and the 
option insequence=true.

with(plots):

display([seq(ApproximateInt(1/(x^2+1),x=-5..5,method=

newtoncotes[k],partition=1, output=plot),k=1..20)],

insequence=true);
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An Approximation of the Integral of
f(x) = 1/(x^2+1)

on the Interval [-5, 5]
Using Newton Cotes' Rule of Order 1

display([seq(ApproximateInt(1/(x+1),x=0..1,method=newtoncotes

[k],partition=1, output=plot),k=1..20)],insequence=true);
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f(x)

   Area: .750000000000000000000000000000

     Partitions: 1
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An Approximation of the Integral of
f(x) = 1/(1+x)

on the Interval [0, 1]
Using Newton Cotes' Rule of Order 1

Richardson extrapolation
Suppose  is some quantity you want to calculate, and you have available some approximations 

.   Often you know something about how well  approximates , e.g. 
.  That is, the error in approximating J by  is less than some constant times 

.  But let's suppose you have more, say  for some  > 0 (and 
typically  = 1 or 2).  Thus the error is approximately some constant times .  Unfortunately you 
don't know the constant .   If you did know it, you could make a better approximation by using 

 instead of .
Richardson extrapolation remedies this difficulty by looking at two different .  We'll get both a 
better approximation for  and some idea of the error in .  Suppose we calculate  and 

.

J:= 'J':

e1:= J = A(n) + C*n^(-p) + O(n^(-p-epsilon));

e2:= eval(e1,n=n/2);
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Think of these as two equations in the two unknowns J and C.
S:= solve({e1,e2},{J, C});

If we neglect the O terms:
SR := simplify(eval(S,O=0));

CR:= eval(C,SR); JR:= eval(J,SR);

simplify(CR-eval(C,S));

So the difference between the Richardson value  and the true C is . 

simplify(JR-eval(J,S));

The difference between the Richardson value  and the true J is .

When n is large, the main contribution to the error in  is .  If we approximate that error as 
, how far off are we (i.e. what is the error in our approximation of the error in our 

approximation)?
simplify(eval(J - A(n) - CR*n^(-p),S));
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This is .  As long as , that's much smaller than the actual error when  is large.  So 
this should be a good approximation for the error in  .

simplify(CR*n^(-p));

We don't know a good approximation for the error in our improved approximation , only that it is 

.  But  should be a fairly conservative estimate for it, at least if  is large.

A closer look at the error in Trapezoid

Applying Richardson to Trapezoid
I want to apply Richardson extrapolation to the Trapezoid rule.

h := n -> (b-a)/n:

X := (k,n) -> a + k*h(n):

a:= 0: b:= 1:

T := n -> add((f(X(k-1,n)) + f(X(k,n)))/2 * h(n), k=1..n);

J := int(f(x),x=a..b);

The Trapezoid Rule  has error , so the improved approximation using 

Richardson extrapolation would be
TR[1] := n -> (2^2*T(n) - T(n/2))/(2^2-1);

I'm calling it  instead of just TR because, as we'll see, this will be the start of a sequence 

TR[1](2);

That should look familiar.   is Simpson's rule.

If T(n) has error , what about ?  It's not hard to see that this will have 

error (where  are other constants).  So Richardson extrapolation 

improves  to this:
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TR[2]:= n -> (2^4*TR[1](n)-TR[1](n/2))/(2^4-1);

TR[2](4);

This turns out to be the same as Newton-Cotes rule of order 4.
with(Student[Calculus1]):

ApproximateInt(f(x), x=a..b, partition=1,

method=newtoncotes[4]);

This should have error 

TR[3] := n -> (2^6*TR[2](n)-TR[2](n/2))/(2^6-1);

TR[3](8);

This one is not the same as the Newton-Cotes rule of order 8, although they evaluate f at the same 
points.

ApproximateInt(f(x), x=a..b, partition=1,

method=newtoncotes[8]); 

We could go farther with these "TR rules", but we won't.  The correct name is "Romberg 
Integration".

 versus 

 was Simpson's Rule (the Newton-Cotes rule of order 2), and  was the Newton-Cotes rule of 
order 4, but  is not a Newton-Cotes rule.  Which is better,  or the Newton-Cotes rule of order 
8?
On the one hand,  should have error , while  should have .  So 

 should be better for large .  On the other hand, if  is fairly small  might be as 
good or better.  Here is our function from last time that was bad for the Newton-Cotes rules with 
partition=1.
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f := x -> 1/((8*x-4)^2+1);

evalf(J-TR[3](8));

evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes[8],

partition=1));

0.008503902378259283398329877305
0.088817627868455361829702426324

So in this particular case  is much better.  If we used a larger n, Newton-Cotes might win.

seq([evalf(J-TR[3](8*k)),

evalf(J-ApproximateInt(f(x),x=0..1,method=newtoncotes[8],

partition=k))], k=1..10);

Maple objects introduced in this lesson
ApproximateInt(..., output=plot) in Student[Calculus1] package
Rule[parts,...] in Student[Calculus1] package
op


