## Lesson 19: Numerical integration

[> restart;

## Left, Right, Midpoint and Trapezoid

[Suppose we want to approximate $J=\int_{a}^{b} f(x) \mathrm{d} x$ numerically. We defined several ways of doing this: left and right Riemann sums, the Midpoint Rule and the Trapezoid Rule.
$>\mathrm{h}:=\mathrm{n} \rightarrow(\mathrm{b}-\mathrm{a}) / \mathrm{n}$;

$$
h:=n \rightarrow \frac{b-a}{n}
$$

$>\mathrm{X}:=(\mathrm{k}, \mathrm{n}) \rightarrow \mathrm{a}+\mathrm{k} * \mathrm{~h}(\mathrm{n})$;

$$
X:=(k, n) \rightarrow a+k h(n)
$$

$>$ LeftSum:= $\mathrm{n} \rightarrow \operatorname{add}\left(\mathrm{f}(\mathrm{X}(\mathrm{k}-1, \mathrm{n})) \mathrm{K}_{\mathrm{h}}(\mathrm{n}), \mathrm{k}=1 . . \mathrm{n}\right)$;
LeftSum $:=n \rightarrow \operatorname{add}(f(X(k-1, n)) h(n), k=1 . . n)$
$>$ RightSum:= $\mathrm{n} \rightarrow \operatorname{add}(\mathrm{f}(\mathrm{X}(\mathrm{k}, \mathrm{n})) * \mathrm{~h}(\mathrm{n}), \mathrm{k}=1 \ldots \mathrm{n})$;

$$
\begin{equation*}
\operatorname{RightSum}:=n \rightarrow \operatorname{add}(f(X(k, n)) h(n), k=1 . . n) \tag{1.2}
\end{equation*}
$$

$$
\begin{aligned}
& >\mathrm{M}:=\mathrm{n} \rightarrow \operatorname{add}(\mathrm{f}((\mathrm{X}(\mathrm{k}-1, \mathrm{n})+\mathrm{X}(\mathrm{k}, \mathrm{n})) / 2) * \mathrm{~h}(\mathrm{n}), \mathrm{k}=1 \ldots \mathrm{n}) ; \\
& \\
& M:=n \rightarrow \operatorname{add}\left(f\left(\frac{1}{2} X(k-1, n)+\frac{1}{2} X(k, n)\right) h(n), k=1 \ldots n\right)
\end{aligned} \quad \begin{aligned}
& >\operatorname{Mformal}:=\mathrm{n} \rightarrow \operatorname{Sum}(\mathrm{f}((\mathrm{X}(\mathrm{k}-1, \mathrm{n})+\mathrm{X}(\mathrm{k}, \mathrm{n})) / 2) * \mathrm{~h}(\mathrm{n}), \mathrm{k}=1 \ldots \mathrm{n}) ; \\
& \quad \text { eval (Mformal }(\mathrm{n}),\{\mathrm{a}=0, \mathrm{~b}=1\}) ;
\end{aligned}
$$

$$
\begin{aligned}
\text { Mformal: }=n & \rightarrow \sum_{k=1}^{n} f\left(\frac{1}{2} X(k-1, n)+\frac{1}{2} X(k, n)\right) h(n) \\
& \sum_{k=1}^{n} \frac{f\left(\frac{1}{2} \frac{k-1}{n}+\frac{1}{2} \frac{k}{n}\right)}{n}
\end{aligned}
$$

$$
[>T:=n \rightarrow \operatorname{add}((f(X(k-1, n))+f(X(k, n))) / 2 * h(n), k=1 \ldots n) ;
$$

$$
\text { Tformal := } n \rightarrow \operatorname{Sum}((f(X(k-1, n))+f(X(k, n))) / 2 * h(n), k=1 \ldots
$$ n) ;

$$
\begin{aligned}
& T:=n \rightarrow a d d\left(\frac{1}{2}(f(X(k-1, n))+f(X(k, n))) h(n), k=1 . . n\right) \\
& \text { Tformal }:=n \rightarrow \sum_{k=1}^{n} \frac{1}{2}(f(X(k-1, n))+f(X(k, n))) h(n)
\end{aligned}
$$

I took the integral $J=\int_{0}^{1} \frac{1}{x+1} \mathrm{~d} x$, which should be $\ln (2)$, and calculated the error (the difference between the true value and the approximation) for left and right sums, Midpoint and Trapezoid Rules with different values of $n$ from 1 to 20 .

```
>a}:=0:b,=1:f:= x m 1/(x + 1):
    J := int(f(x),x=a..b);
                                    J:= ln(2)
> LeftSumErrors := [seq([n, evalf(J - LeftSum(n))], n = 1.. 20)
    ];
    RightSumErrors := [seq([n, evalf(J - RightSum(n))], n = 1..
    20)];
    LeftSumErrors := [[1, -0.3068528194], [2, -0.1401861527], [3, -0.0901861527], [4,
        -0.0663766289], [5, -0.0524877400], [6, -0.0433968309], [7, -0.0369865745 ], [8,
        -0.0322246698], [9, -0.0285481992], [10, -0.0256242226], [11, -0.0232432702],
        [12,-0.0212669856], [13, -0.0196003189], [14, -0.0181758175 ], [15,
        -0.0169442904], [16, -0.0158690216], [17, -0.0149220519], [18, -0.0140817158],
        [19, -0.0133309650], [20, -0.0126562012]]
    RightSumErrors := [[1, 0.1931471806], [2, 0.1098138473], [3, 0.0764805139], [4,
        0.0586233711 ], [5, 0.0475122600], [6, 0.0399365024], [7, 0.0344419969], [8,
        0.0302753302 ], [9, 0.0270073564], [10, 0.0243757774], [11, 0.0222112753], [12,
        0.0203996811 ], [13, 0.0188612195 ], [14, 0.0175384682], [15, 0.0163890429], [16,
        0.0153809784 ], [17, 0.0144897128 ], [18, 0.0136960620], [19, 0.0129848244], [20,
        0.0123437988]]
    > MidpointErrors := [seq([n, evalf(J - M(n))], n = 1 .. 20)];
    MidpointErrors := [[1, 0.0264805139], [2, 0.0074328949], [3, 0.0033924908], [4,
        0.0019272894], [5, 0.0012392949], [6, 0.0008628597], [7, 0.0006349395], [8,
        0.0004866266], [9, 0.0003847676], [10, 0.0003118202], [11, 0.0002577997], [12,
        0.0002166855 ], [13, 0.0001846727], [14, 0.0001592614], [15, 0.0001387542], [16,
        0.0001219663], [17, 0.0001080498], [18, 0.0000963856], [19, 0.0000865128 ], [20,
        0.0000780824]]
    > TrapezoidErrors := [seq([n, evalf(J - T(n))], n = 1 .. 20)];
    TrapezoidErrors := [[1, -0.0568528194], [2, -0.0151861527], [3, -0.0068528194], [4,
        -0.0038766289], [5, -0.0024877400], [6, -0.0017301643], [7, -0.0012722888], [8,
        -0.0009746698], [9, -0.0007704214], [10, -0.0006242226], [11, -0.0005159975],
        [12,-0.0004336523 ], [13, -0.0003695497], [14, -0.0003186747], [15,
        -0.0002776238], [16, -0.0002440216], [17, -0.0002161696], [18, -0.0001928269],
        [19, -0.0001730703], [20, -0.0001562012]]
```

The errors all decrease in size, of course, as $n$ increases, but the Midpoint and Trapezoid errors decrease faster than the Left and Right Sum errors.
> with (plots):
display (pointplot (LeftSumErrors, colour=red), pointplot (RightSumErrors, colour=gold),
pointplot(MidpointErrors, colour=green), pointplot
(TrapezoidErrors, colour=blue), axes=box) ;


It turns out the errors in both Left and Right Sum methods are approximately proportional to $n^{-1}$, while for Midpoint and Trapezoid they are approximately proportional to $n^{-2}$. To see that, one way is to plot $n$ or $n^{2}$ times the error.
$>\operatorname{LSn}:=\left[\operatorname{seq}\left(\left[n, \operatorname{evalf}(J-\operatorname{LeftSum}(n)) *_{n}\right], n=1 . .20\right)\right]$;
RSn := [seq([n, evalf(J-RightSum(n)) *n], n=1..20)];
display (pointplot (LSn, colour=red), pointplot (RSn, colour=gold), axes=box);
$\operatorname{LSn}:=[[1,-0.3068528194],[2,-0.2803723054],[3,-0.2705584581]$, [4, $-0.2655065156],[5,-0.2624387000]$ ] [6, -0.2603809854], [7, -0.2589060215 ], [8, $-0.2577973584],[9,-0.2569337928],[10,-0.2562422260],[11,-0.2556759722]$, [12, -0.2552038272 ], [13, -0.2548041457], [14, -0.2544614450], [ 15, $-0.2541643560],[16,-0.2539043456],[17,-0.2536748823],[18,-0.2534708844]$, [19, -0.2532883350], [20, -0.2531240240]]
$R S n:=[[1,0.1931471806],[2,0.2196276946],[3,0.2294415417],[4,0.2344934844]$, [ $5,0.2375613000],[6,0.2396190144],[7,0.2410939783],[8,0.2422026416],[9$, 0.2430662076 ], [ $10,0.2437577740$ ], [11, 0.2443240283], [12, 0.2447961732], [13, $0.2451958535],[14,0.2455385548],[15,0.2458356435],[16,0.2460956544],[17$,
$0.2463251176],[18,0.2465291160],[19,0.2467116636],[20,0.2468759760]]$



Mnsq := [ [1, 0.0264805139], [2, 0.0297315796], [3, 0.0305324172], [4, 0.0308366304], [5, 0.0309823725], [6, 0.0310629492], [7, 0.0311120355], [8, 0.0311441024], [9, $0.0311661756],[10,0.0311820200],[11,0.0311937637],[12,0.0312027120],[13$, 0.0312096863 ], [ $14,0.0312152344],[15,0.0312196950],[16,0.0312233728],[17$, 0.0312263922 ], [ $18,0.0312289344$ ], [19, 0.0312311208], [20, 0.0312329600]]

Tnsq := [[1, -0.0568528194], [2, -0.0607446108], [3, -0.0616753746], [4, $-0.0620260624],[5,-0.0621935000],[6,-0.0622859148],[7,-0.0623421512],[8$, -0.0623788672 ], [9, -0.0624041334], [10, -0.0624222600], [11, -0.0624356975], [12, -0.0624459312], [13, -0.0624538993], [14, -0.0624602412 ], [15, -0.0624653550 ], [ $16,-0.0624695296],[17,-0.0624730144]$, [18, -0.0624759156], [19, -0.0624783783], [20, -0.0624804800]]
> display(pointplot(Mnsq, colour=green), pointplot(Tnsq, colour= blue), axes=box);


The theoretical results for the Left Sum and Right Sum are as follows:
If $f^{\prime}$ is continuous, the error in Left Sum is $\frac{f^{\prime}(t)(b-a)^{2}}{2 n}$ for some $t$ between $a$ and $b$, the error in Right Sum is $-\frac{f^{\prime}(t)(b-a)^{2}}{2 n}$ (for a different $t$ in the same interval). Here's how that works in the case of the Left Sum (the Right Sum is similar).
Let the minimum and maximum values of $f$ ' on our interval be $c$ and $d$. Then at any point $x$ of the subinterval $\left[x_{k-1}, x_{k}\right]$ we have $f\left(x_{k-1}\right)+c\left(x-x_{k-1}\right) \leq f(x) \leq f\left(x_{k-1}\right)+d\left(x-x_{k-1}\right)$
Integrating this over the subinterval,
$f\left(x_{k-1}\right) h+\frac{c h^{2}}{2} \leq \int_{x_{k-1}}^{x_{k}} f(x) \mathrm{d} x \leq f\left(x_{k-1}\right) h+\frac{d h^{2}}{2}$
Now add these for all $n$ subintervals, remembering that $h=\frac{(b-a)}{n}$.
$L(n)+\frac{c(b-a)^{2}}{2 n} \leq J \leq L(n)+\frac{d(b-a)^{2}}{2 n}$
(where $L(n)$ is the left sum), i.e.

$$
\frac{c(b-a)^{2}}{2 n} \leq J-L(n) \leq \frac{d(b-a)^{2}}{2 n}
$$

and since the continuous function $f^{\prime}$ takes on all values between its minimum and its maximum somewhere in the interval, $J-L(n)=\frac{f^{\prime}(t)(b-a)^{2}}{2 n}$ for some $t$ in the interval. Here's the theoretical result for the Midpoint and Trapezoid Rules. Assume $f^{\prime \prime}$ is continuous on the interval $[a, b]$. Then the error in the Midpoint Rule is $\frac{f^{\prime \prime}(t)(b-a)^{3}}{24 n^{2}}$ for some $t$ between $a$ and $b$, and the error in the Trapezoid Rule is $-\frac{f^{\prime \prime}(t)(b-a)^{3}}{12 n^{2}}$ (for a different $t$ in the same interval). If the assumption that $f^{\prime \prime}$ is continuous is not true, these error estimates might not be true.
Here's an example of a function whose second derivative is not continuous, in fact it doesn't have a first derivative at 0 .

```
> f := x -> sqrt(x);
    f:=x->\sqrt{}{x}
> J := int(f(x),x=a..b);
    LSn := [seq([n, evalf(J-LeftSum(n))*n], n=1..20)];
    RSn := [seq([n, evalf(J-RightSum(n))*n], n=1..20)];
    display (pointplot (LSn, colour=red), pointplot (RSn, colour=gold),
    axes=box);
```

$$
J:=\frac{2}{3}
$$

$\operatorname{LSn}:=[[1,0.6666666667],[2,0.6262265524],[3,0.6061531497],[4,0.5935344820]$, [ $5,0.5846403465],[6,0.5779271490],[7,0.5726227374],[8,0.5682915608],[9$, 0.5646664926 ], [10, 0.5615732515 ], [11, 0.5588925673 ], [12, 0.5565396620], [13, 0.5544523739 ], [14, 0.5525839302 ], [ $15,0.5508983688$ ], [16, 0.5493675208 ], [ 17 , 0.5479689424 ], [ $18,0.5466845279$ ], [19, 0.5454994673 ], [20, 0.5444015080$]]$ RSn $:=[[1,-0.3333333333],[2,-0.3737734476],[3,-0.3938468505],[4$, -0.4064655180], [5, -0.4153596535 ], [6, -0.4220728512 ], [7, -0.4273772622 ], [8, -0.4317084392 ], [ $9,-0.4353335086],[10,-0.4384267487],[11,-0.4411074330]$, [12, -0.4434603380], [13, -0.4455476268], [14, -0.4474160705], [15, -0.4491016292 ], [16, -0.4506324787], [17, -0.4520310582 ], [ 18, -0.4533154702], [19, -0.4545005329], [20, -0.4555984920]]


In this case it looks like the errors in left and right Riemann sums are behaving more or less as they should (as a more detailed error analysis would show), but:

```
Mnsq := [seq([n, evalf(J-M(n))*n^2],n=1..20)];
```

    Tnsq := [seq([n, evalf(J-T(n))*n^2], n=1..20)];
    display (pointplot (Mnsq, colour=green) , pointplot(Tnsq, colour=
    blue), axes=box) ;
    Mnsq := [[1, -0.0404401143], [2, -0.0653841412], [3, -0.0846780021], [4,
-0.1009716848 ], [5, -0.1153354775], [6, -0.1283249232], [7, -0.1402716532], [8, -0.1513923456 ], [9, -0.1618376679], [10, -0.1717174520], [11, -0.1811146053],
[12, -0.1900936483 ], [13, -0.1987058161 ], [14, -0.2069927639], [15, -0.2149887038 ], [ $16,-0.2227222810$ ], [17, -0.2302178017], [18, -0.2374958848], [19, -0.2445745723], [20, -0.2514692560]]
Tnsq := [ [1, 0.1666666667], [2, 0.2524531048], [3, 0.3184594488], [4, 0.3741379280], [5, 0.4232017325 ], [6, 0.4675628916], [7, 0.5083591632 ], [8, 0.5463324864], [9, 0.5819984298 ], [10, 0.6157325130], [11, 0.6478182301], [12, 0.6784759339], [13, 0.7078808749 ], [14, 0.7361750298], [15, 0.7634755485], [16, 0.7898803174], [17, $0.8154719936],[18,0.8403214849],[19,0.8644898768],[20,0.8880301440]]$


These don't appear to be approaching constant values. In fact, it turns out the dependence on $n$ is not like $n^{-2}$, but $n^{-1.5}$.
$>$ display (pointplot ([seq([n, evalf(J-M(n))*n^1.5],n=1..20)], colour=green),
pointplot ([seq([n, evalf(J-T(n)) *n^1.5], n=1..20)], colour= blue), axes=box);


## Big-O notation

Suppose you want to approximate a quantity $J$, and you can use approximations $A(n)$ depending on a positive integer $n$ (e.g. the number of intervals used). Typically, you know something about how the $\operatorname{error} J-A(n)$ depends on $n$. For example, with the Trapezoid rule (when $f^{\prime \prime}$ is continuous) we know $|J-T(n)|$ is less than some constant times $n^{-2}$. We could write this as $J=T(n)+\mathrm{O}\left(n^{-2}\right)$. This $\mathrm{O}\left(n^{-2}\right)$ term means "something whose absolute value is less than some constant times $n^{-2}$ when $n$ is large". Similarly, for the left Riemann sum, $J=L(n)+\mathrm{O}\left(n^{-1}\right)$. Here's the definition of O:

Let $f(n)$ and $g(n)$ be functions of $n$. We say $f(n)=\mathrm{O}(g(n))$ as $n \rightarrow \infty$ if there exist constants $M$ and $N$ such that $|f(n)| \leq M|g(n)|$ whenever $n>N$.
Note that O is not a function, it's a way of expressing relationships between functions.
There's a similar notation for functions of $x$ as $x \rightarrow 0: f(x)=O(g(x))$ as $x \rightarrow 0$ if there exist constants $M$ and $\varepsilon>0$ such that $|f(x)| \leq M|g(x)|$ whenever $|x|<\varepsilon$.

## Simpson's Rule

When $f^{\prime \prime}$ is continuous, the Midpoint Rule's error is approximately $-1 / 2$ times the Trapezoid Rule's error. This might suggest that a combination of the two rules would cancel out the error (at least approximately) and produce a much better approximation. The appropriate combination is $2 / 3^{*}$ Midpoint $+1 / 3^{*}$ Trapezoid. This is called Simpson's Rule.
$>\mathrm{f}:=\mathrm{f} \mathrm{f}: 2 / 3 * \mathrm{M}(1)+1 / 3 * \mathrm{~T}(1)$;

$$
\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(0)+\frac{1}{6} f(1)
$$

I'm going to call this the Simpson's Rule approximation for $n=2$ (rather than $n=1$ ): it uses the same three equally-spaced points as the Trapezoid Rule for $n=2$. We'll only use $S(n)$ when $n$ is even.

$$
\begin{align*}
& >\mathrm{S}:=\mathrm{n} \rightarrow \text { add }(1 / 3 * \mathrm{f}(\mathrm{X}(2 * \mathrm{k}-2, \mathrm{n}))+4 / 3 * \mathrm{f}(\mathrm{X}(2 * \mathrm{k}-1, \mathrm{n}))+1 / 3 * \mathrm{f} \\
& \text { ( } \mathrm{X}(2 * \mathrm{k}, \mathrm{n})) \text { ) * } \mathrm{h}(\mathrm{n}), \mathrm{k}=1 . . \mathrm{n} / 2) \text {; } \\
& S:=n \rightarrow a d d\left(\left(\frac{1}{3} f(X(2 k-2, n))+\frac{4}{3} f(X(2 k-1, n))+\frac{1}{3} f(X(2 k, n))\right) h(n), k\right. \\
& =1 . . \frac{1}{2} n \text { ) } \\
& >\mathrm{S}(2) \text {; } \\
& \frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(0)+\frac{1}{6} f(1) \\
& >\mathrm{S}(6) \text {; } \\
& \frac{1}{18} f(0)+\frac{2}{9} f\left(\frac{1}{6}\right)+\frac{1}{9} f\left(\frac{1}{3}\right)+\frac{2}{9} f\left(\frac{1}{2}\right)+\frac{1}{9} f\left(\frac{2}{3}\right)+\frac{2}{9} f\left(\frac{5}{6}\right)+\frac{1}{18} f(1) \tag{3.1}
\end{align*}
$$

$\left[\right.$ The theoretical value for the error in Simpson's Rule is $\frac{\mathrm{D}^{(4)}(f)(t)(b-a)^{5}}{180 n^{4}}$. Thus it is $\mathrm{O}\left(n^{-4}\right)$.
$>\mathrm{f}:=\mathrm{x} \rightarrow 1 /(\mathrm{x}+1): \mathrm{J}:=\ln (2):$ Digits:= 20;
SimpsonErrors $:=$ [seq([2*j, evalf(J - S(2*j))], j = 1 .. 20)] ;

$$
\text { Digits }:=20
$$

SimpsonErrors $:=[[2,-0.00129726388449913502],[4,-0.00010678769402294455],[6$, $-0.00002261260984786037],[8,-0.00000735009458534511],[10$, -0.00000305012898506991 ], [12, -0.00000148164915572052 ], [14, $\left.-8.033151440531710^{-7}\right],\left[16,-4.722594737316510^{-7}\right],[18$, $\left.-2.954210615991210^{-7}\right],\left[20,-1.941051708095510^{-7}\right],[22$, $\left.-1.327182688100510^{-7}\right],\left[24,-9.37843723368410^{-8}\right],\left[26,-6.81330861813510^{-8}\right]$, $\left[28,-5.06802385398310^{-8}\right],\left[30,-3.84736066278810^{-8}\right],[32$, $\left.-2.97298776303210^{-8}\right],\left[34,-2.33344585922310^{-8}\right],\left[36,-1.85696759015810^{-8}\right]$, [38, - $\left.\left.1.49611647227710^{-8}\right],\left[40,-1.21880107171110^{-8}\right]\right]$
$>\operatorname{Sn} 4:=[$ seq([2*j, (2*j)^4*evalf(J - S(2*j))], j = 1 .. 20)];
$\operatorname{Sn4}:=[[2,-0.02075622215198616032],[4,-0.02733764966987380480],[6$,
-0.02930594236282703952 ], [8, -0.03010598742157357056], [10,
$-0.03050128985069910000],[12,-0.03072347689302070272$ ], [14,
-0.03086015457394657872 ], [16, -0.03094999687047741440], [18,

```
-0.03101212136242922112 ], [20, -0.03105682732952800000 ], [22,
-0.03109005077836707280], [24, -0.03111540391642742784], [26,
-0.03113518519080859760], [28, -0.03115091269993774848 ], [30,
-0.03116362136858280000], [32, -0.03117403616609042432], [34,
-0.03118267705730626928 ], [36, -0.03118992475910819328 ], [38,
-0.03119606316537774672 ], [40, -0.03120130743580160000]]
> with(plots): pointplot(Sn4);
```



To get an idea of how much better this is than Left Sum, Right Sum, Midpoint or Trapezoid, let's see what $n$ would be needed to have an error less than $10^{-10}$ in absolute value (without roundoff error).
LWe'll keep Digits $=20$, otherwise roundoff error would be a problem.
For the Left Sum with this function $f$, the error was approximately $-\frac{.25}{n}$. So:
solve(.25/n = 10^(-10));
$2.50000000010^{9}$
I won't actually calculate a sum with 2.5 billion terms. It might take a while, and roundoff error would be quite severe.

For the Trapezoid Rule with this function $f$, the error was approximately $-\frac{0.06}{n^{2}}$. So:
$>\operatorname{solve}\left(0.06 / \mathrm{n}^{\wedge} 2=10^{\wedge}(-10)\right)$;
-24494.897427831780982, 24494.897427831780982
We'd need $n \geq 24495$.
$>$ evalf(T(24495)-J);

$$
1.041657942510^{-10}
$$

Well, that's a bit more than $10^{-10}$. The $-\frac{.06}{n^{2}}$ was, after all, only an approximation. Let's try making $n$ a little larger.
$>$ evalf(T(25000)-J);

$$
9.999999999810^{-11}
$$

(3.3)
$>$ evalf(T(25500)-J);

$$
\begin{equation*}
9.61168781010^{-11} \tag{3.4}
\end{equation*}
$$

For the Midpoint Rule, the error was approximately $\frac{0.03}{n^{2}}$. So:
$>$ solve (0.03/n^2 = 10^(-10));

- 17320.508075688772935, 17320.508075688772935
[We'd need $n \geq 17321$. Again,
$>$ evalf(M(17321)-J);

$$
-1.041607499210^{-10}
$$

Again, it really needs to be a little larger.
$>$ evalf(M(18000)-J);

$$
\begin{equation*}
-9.64506172210^{-11} \tag{3.5}
\end{equation*}
$$

For Simpson's Rule, the error was approximately $-\frac{0.031}{n^{4}}$. So:
$>$ solve (0.031/n^4 = 10^(-10));
132.69068114098672131, 132.69068114098672131 I, -132.69068114098672131, - 132.69068114098672131 I

We'd need $\mathrm{n}>=133$, actually 134 since n must be even.
$>$ evalf(J - S(134));

$$
\begin{equation*}
-9.69103969710^{-11} \tag{3.6}
\end{equation*}
$$

Here's a different point of view about the three different rules. If you were integrating a polynomial, when would the rule give the correct answer (neglecting round-off error)?
The Midpoint and Trapezoid rules give the correct answers for polynomials of degree up to 1, but in general not for higher degrees.
$>\mathrm{f}:=$ unapply(add (c[j]*x^j, j=0..5), x);

$$
\begin{equation*}
f:=x \rightarrow c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5} \tag{3.7}
\end{equation*}
$$

$>\mathrm{J}:=\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a} . \mathrm{b})$;

$$
\begin{equation*}
J:=c_{0}+\frac{1}{2} c_{1}+\frac{1}{3} c_{2}+\frac{1}{4} c_{3}+\frac{1}{5} c_{4}+\frac{1}{6} c_{5} \tag{3.8}
\end{equation*}
$$

$\gg J-T(2) ;$

$$
\begin{equation*}
-\frac{1}{24} c_{2}-\frac{1}{16} c_{3}-\frac{13}{160} c_{4}-\frac{19}{192} c_{5} \tag{3.9}
\end{equation*}
$$

$>\mathrm{J}-\mathrm{M}(2)$;

$$
\begin{equation*}
\frac{1}{48} c_{2}+\frac{1}{32} c_{3}+\frac{51}{1280} c_{4}+\frac{73}{1536} c_{5} \tag{3.10}
\end{equation*}
$$

The thing to notice is that there is no $c_{0}$ or $c_{1}$. So if the polynomial has degree $\leq 1$, the error would be 0 .
Simpson's Rule is exact up to degree 3 .
$>$ J - S(2);

$$
-\frac{1}{120} c_{4}-\frac{1}{48} c_{5}
$$

We could have used this to derive Simpson's Rule in another way. Suppose we didn't know the coefficients, but we knew the general form of the rule we wanted.

$$
\begin{align*}
& >\text { rule: }=\mathrm{n}->\operatorname{add}((\mathrm{d}[0] * f(\mathrm{X}(2 * \mathrm{k}-2, \mathrm{n}))+\mathrm{d}[1] * \mathrm{f}(\mathrm{X}(2 * \mathrm{k}-1, \mathrm{n}))+\mathrm{d} \\
& \text { [2]*f(X(2*k,n))) *h(n), k=1..n/2); } \\
& \text { rule }:=n \rightarrow \operatorname{add}\left(\left(d_{0} f(X(2 k-2, n))+d_{1} f(X(2 k-1, n))+d_{2} f(X(2 k, n))\right) h(n), k\right. \\
& =1 . . \frac{1}{2} n \text { ) } \\
& >\text { J - rule (2); } \\
& c_{0}+\frac{1}{2} c_{1}+\frac{1}{3} c_{2}+\frac{1}{4} c_{3}+\frac{1}{5} c_{4}+\frac{1}{6} c_{5}-\frac{1}{2} d_{0} c_{0}-\frac{1}{2} d_{1}\left(c_{0}+\frac{1}{2} c_{1}+\frac{1}{4} c_{2}\right.  \tag{3.11}\\
& \left.+\frac{1}{8} c_{3}+\frac{1}{16} c_{4}+\frac{1}{32} c_{5}\right)-\frac{1}{2} d_{2}\left(c_{0}+c_{1}+c_{2}+c_{3}+c_{4}+c_{5}\right)
\end{align*}
$$

If we want the rule to give the right answer for polynomials of degree up to 2 , we need the coefficients of $c_{0}, c_{1}$ and $c_{2}$ here to cancel out.

$$
\left[\begin{array}{rl}
>\text { eqns } & :=\{\operatorname{seq}(\operatorname{coeff}(\%, c[j]), j=0 \ldots 2)\} ; \\
\text { eqns }:=\left\{\frac{1}{2}-\frac{1}{4} d_{1}-\frac{1}{2} d_{2}, \frac{1}{3}-\frac{1}{8} d_{1}-\frac{1}{2} d_{2}, 1-\frac{1}{2} d_{0}-\frac{1}{2} d_{1}-\frac{1}{2} d_{2}\right\}
\end{array}\right.
$$

I'm only doing this for $j$ up to 2 , not 3 :
there are only three parameters, $d_{0}$ to $d_{2}$, so I want three equations. The fact that it is exact for $x^{3}$ too is an added bonus.
> R:= solve (eqns);

$$
R:=\left\{d_{0}=\frac{1}{3}, d_{1}=\frac{4}{3}, d_{2}=\frac{1}{3}\right\}
$$

$>f:=$ 'f': eval(rule(2),R) $=S(2)$;

$$
\begin{equation*}
\frac{1}{6} f(0)+\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(1)=\frac{1}{6} f(0)+\frac{2}{3} f\left(\frac{1}{2}\right)+\frac{1}{6} f(1) \tag{3.12}
\end{equation*}
$$

## Newton-Cotes Rules

This can be generalized. Let's say I want a rule that uses some linear combination of $f\left(x_{j}\right)$ for $=0 \leq j \leq k$.

$$
\begin{aligned}
& >\text { rule:= k } \rightarrow \text { add (d[j]*f(X(j,k)), j=0..k) * h(k); } \\
& \text { rule }:=k \rightarrow \operatorname{add}\left(d_{j} f(X(j, k)), j=0 . . k\right) h(k) \\
& >\text { rule(1); rule(2); rule(3); } \\
& d_{0} f(0)+d_{1} f(1) \\
& \frac{1}{2} d_{0} f(0)+\frac{1}{2} d_{1} f\left(\frac{1}{2}\right)+\frac{1}{2} d_{2} f(1) \\
& \frac{1}{3} d_{0} f(0)+\frac{1}{3} d_{1} f\left(\frac{1}{3}\right)+\frac{1}{3} d_{2} f\left(\frac{2}{3}\right)+\frac{1}{3} d_{3} f(1)
\end{aligned}
$$

With $k+1$ degrees of freedom in choosing the coefficients $d_{j}$ I can hope to get the integrals of $k+1$ functions $x^{j}$ for $0 \leq j \leq k$ correct. The result is called a Newton-Cotes rule of order $k$.
$>$ eqns:=k $\rightarrow$ \{seq(eval(int $(f(x), x=0.1)$ - rule (k), $f=$ unapply ( $\left.\mathrm{x}^{\wedge} \mathrm{j}, \mathrm{x}\right)$ ), $\left.\mathrm{j}=0 . \mathrm{k}\right)$ \};

$$
\text { eqns }:=k \rightarrow\left\{\operatorname{seq}\left(\left.\left(\int_{0}^{1} f(x) \mathrm{d} x-\operatorname{rule}(k)\right)\right|_{f=\operatorname{unapply}\left(x^{j}, x\right)}, j=0 . . k\right)\right\}
$$

$>$ eqns(2);

$$
\left\{\frac{1}{2}-\frac{1}{4} d_{1}-\frac{1}{2} d_{2}, \frac{1}{3}-\frac{1}{8} d_{1}-\frac{1}{2} d_{2}, 1-\frac{1}{2} d_{0}-\frac{1}{2} d_{1}-\frac{1}{2} d_{2}\right\}
$$

$>$ solve(\%);

$$
\left\{d_{0}=\frac{1}{3}, d_{1}=\frac{4}{3}, d_{2}=\frac{1}{3}\right\}
$$

$>$ eqns (3) ;
$\left\{\frac{1}{2}-\frac{1}{9} d_{1}-\frac{2}{9} d_{2}-\frac{1}{3} d_{3}, \frac{1}{3}-\frac{1}{27} d_{1}-\frac{4}{27} d_{2}-\frac{1}{3} d_{3}, \frac{1}{4}-\frac{1}{81} d_{1}-\frac{8}{81} d_{2}\right.$ $\left.-\frac{1}{3} d_{3}, 1-\frac{1}{3} d_{0}-\frac{1}{3} d_{1}-\frac{1}{3} d_{2}-\frac{1}{3} d_{3}\right\}$
[ $>$ solve (\%);

$$
\left\{d_{0}=\frac{3}{8}, d_{1}=\frac{9}{8}, d_{2}=\frac{9}{8}, d_{3}=\frac{3}{8}\right\}
$$

$>$ NC3 : = subs (\%, rule (3));

$$
N C 3:=\frac{1}{8} f(0)+\frac{3}{8} f\left(\frac{1}{3}\right)+\frac{3}{8} f\left(\frac{2}{3}\right)+\frac{1}{8} f(1)
$$

This is sometimes called the "three-eighths rule". Like Simpson's rule, it is exact for polynomials of degree 3 but not of degree 4 .
$>\operatorname{eval}\left(\mathrm{NC} 3-\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=0 . .1), \mathrm{f}=\operatorname{unapply}\left(\operatorname{add}\left(\mathrm{c}[j] \mathrm{H}_{\mathrm{x}}{ }^{\wedge} \mathrm{j}, \mathrm{j}=0 . .4\right)\right.\right.$,
x) );

$$
\frac{1}{270} c_{4}
$$

[What about the 4th order Newton-Cotes rule?
$>$ NC4 : = subs(solve (eqns (4), \{seq(d[j],j=0..4)\}), rule(4));

$$
N C 4:=\frac{7}{90} f(0)+\frac{16}{45} f\left(\frac{1}{4}\right)+\frac{2}{15} f\left(\frac{1}{2}\right)+\frac{16}{45} f\left(\frac{3}{4}\right)+\frac{7}{90} f(1)
$$

$>\operatorname{eval}\left(N C 4-i n t(f(x), x=0 \ldots 1), f=u_{n a p p l y}\left(\operatorname{add}\left(c[j] * x^{\wedge} j, j=0 . .6\right)\right.\right.$,
x) );

$$
\frac{1}{2688} c_{6}
$$

In general, when $k$ is odd the Newton-Cotes rules of orders $k-1$ and $k$ are both exact for polynomials of degree $k$ but not degree $k+1$.

These are the "simple" versions of the rules. For the "compound" version of the order $k$ rule, you divide the interval into a number of subintervals that is a multiple of $k$, and use the simple rule on the first $k$ intervals, the next $k$, etc.

It wouldn't be hard to write a function to generate Newton-Cotes rules, but the Student[Calculus1] package already has one, called ApproximateInt.

$$
\begin{align*}
& \text { > with (Student[Calculus1]): } \\
& >\text { ApproximateInt }(\mathrm{f}(\mathrm{x}) \text {, } \mathrm{x}=\mathrm{a} . \mathrm{b}, \mathrm{partition=1,} \\
& \text { method=newtoncotes [4]); } \\
& \frac{7}{90} f(0)+\frac{16}{45} f\left(\frac{1}{4}\right)+\frac{2}{15} f\left(\frac{1}{2}\right)+\frac{16}{45} f\left(\frac{3}{4}\right)+\frac{7}{90} f(1) \\
& >\text { ApproximateInt }(f(x), x=a . b, \text { partition=2, } \\
& \text { method=newtoncotes [4]); } \\
& \frac{7}{180} f(0)+\frac{8}{45} f\left(\frac{1}{8}\right)+\frac{1}{15} f\left(\frac{1}{4}\right)+\frac{8}{45} f\left(\frac{3}{8}\right)+\frac{7}{90} f\left(\frac{1}{2}\right)+\frac{8}{45} f\left(\frac{5}{8}\right)  \tag{4.1}\\
& +\frac{1}{15} f\left(\frac{3}{4}\right)+\frac{8}{45} f\left(\frac{7}{8}\right)+\frac{7}{180} f(1)
\end{align*}
$$

For the Newton-Cotes rule of order $k$ with $n$ intervals (where $n$ is divisible by $k$ ), you use partition $=\mathbf{n} / \mathbf{k}$ and method $=$ newtoncotes $[k]$.
The error in the Newton-Cotes rule with order $k$ and $n$ intervals is $\mathrm{O}\left(\frac{1}{n^{k+1}}\right)$ if $k$ is odd, or $\mathrm{O}\left(\frac{1}{n^{k+2}}\right)$ if $k$ is even, i.e. it's $\mathrm{O}\left(\frac{1}{n^{p+1}}\right)$ where the rule is exact for polynomials of degree up to $p$. Let's look at this for $k=8$ with $f(x)=\frac{1}{1+x}$. The higher-order rules are so accurate that I need to increase Digits (otherwise roundoff error will overwhelm the real error).
$>$ Digits $:=30$ :
$\mathrm{f}:=\mathrm{x} \rightarrow 1 /(1+\mathrm{x}): \mathrm{J}:=\operatorname{int}(\mathrm{f}(\mathrm{x}), \mathrm{x}=\mathrm{a} . \mathrm{b}):$
NC8Errors $:=$ [seq ([8*n, evalf(J - ApproximateInt (f (x), x=a..b, method=newtoncotes [8], partition=n))], $\mathrm{n}=1$.. 15)];
NC8Errors $:=\left[\left[8,-3.397351261028407382323410^{-8}\right],[16\right.$,
$\left.-1.0258314470288506315510^{-10}\right],\left[24,-2.50325482423172262210^{-12}\right],[32$, $\left.-1.6308175576666031910^{-13}\right],\left[40,-1.886600856479768510^{-14}\right],[48$, $\left.-3.18043537823535210^{-15}\right],\left[56,-6.9927735953299610^{-16}\right],[64$, $\left.-1.8726509427571710^{-16}\right],\left[72,-5.838686573536910^{-17}\right],[80$, $\left.-2.054167831718810^{-17}\right],\left[88,-7.97289915975910^{-18}\right],[96$, $\left.-3.35703844310410^{-18}\right],\left[104,-1.51382668147510^{-18}\right],[112$, $\left.\left.-7.2379611888010^{-19}\right],\left[120,-3.6400433505810^{-19}\right]\right]$
$>$ NC8ScaledErrors: $=$ [seq([t[1],t[2]*t[1]^10],t=NC8Errors)]; NC8ScaledErrors := [[8, -36.4787813978534225851099287388], [16,
-112.791360414650107672990612193], [24, - 158.714819274179246654785817936], [32, - 183.613733625414412467156398637], [40, -197.824437968412973465600000000], [48, -206.489964464144113652829360488], [56, -212.094661546994630622013655351], [64, -215.901954252702690489941771682], [72, -218.594951113925782651812452499], [80, -220.564591443186936709120000000], [88, -222.046019761742359729124740694], [96, -223.186871725363702603413826044], [104, -224.083329361027097648598456730], [112,
-224.800087902994022275224824709], [120, -225.381889929011181649920000000]]
> with(plots): pointplot(NC8ScaledErrors);


To some extent, the higher the order, the better. That is, if one method has error estimate $\frac{A}{n^{p}}$ and a second has $\frac{B}{n^{q}}$ with $p<q$, then the second will be more accurate when $n$ is sufficiently large. This isn't necessarily true for a fixed $n$, however, because B might be much bigger than A . In the case of the error estimates for Newton-Cotes rules, the coefficient of $n^{-p}$ depends on the p'th derivative of the function f . So for a function whose higher-order derivatives might grow rapidly, higher order might not be better.

## Errors for Newton-Cotes rules with fixed n.

I want to look at the errors in Newton-Cotes rules with different orders, all using the same $n$, for some functions on the interval 0 .. 1 .
I'll take $n$ to be 36 , so the order $k$ can be any factor of 36 . These are the possibilities.
$>\mathrm{K}:=[1,2,3,4,6,9,12,18,36]$;

$$
K:=[1,2,3,4,6,9,12,18,36]
$$

$\left[\right.$ First I'll use our function $f(x)=\frac{1}{1+x}$.

```
> seq(evalf(J - ApproximateInt(f(x),x=0..1,method=newtoncotes[K
    [j]],
    partition=36/K[j])), j=1..9);
-0.000048220659074225432544874437, - 1.8569675901583997777594 10-8,
    -4.1701931418315024957474 10-8, - 1.12916855081263634600 10-10,
    -1.782655156859319104 10-12, - 1.04704005629163311 10-13,
    -1.47509332767563 10-16},-1.2486298366710-19, -3.3836 10-26
For this function, the higher-order rules turned out to be better. But if we take an f whose higher derivatives grow faster, that might not be true.
```

```
> f:= x -> 1/(x^2 + 1/100):
```

> f:= x -> 1/(x^2 + 1/100):
J:= int(f(x),x=a..b):
J:= int(f(x),x=a..b):
seq(evalf(J - ApproximateInt(f(x),x=a..b,method=newtoncotes[K
seq(evalf(J - ApproximateInt(f(x),x=a..b,method=newtoncotes[K
[j]],
[j]],
partition=36/k[j])), j=1..9);
partition=36/k[j])), j=1..9);
0.0001260432912976827321474639, 0.0001283845192766359990055555,
0.0001260432912976827321474639, 0.0001283845192766359990055555,
0.0020884379267844848008648205, -0.0022812707914423330774552119,
0.0020884379267844848008648205, -0.0022812707914423330774552119,
-0.0010850923254841156779240360, -0.0004097357589139511752654873,
-0.0010850923254841156779240360, -0.0004097357589139511752654873,
0.0010532909662917247600065260, 0.0004493644413640830138650209,
0.0010532909662917247600065260, 0.0004493644413640830138650209,
-0.0005849528645731961183032399

```
    -0.0005849528645731961183032399
```

[Here the best answer was obtained with $\mathrm{k}=1$, i.e. the Trapezoid rule.

