
(1.2)(1.2)

(1.1)(1.1)

Lesson 19: Numerical integration
restart;

Left, Right, Midpoint and Trapezoid

Suppose we want to approximate  numerically.  We defined several ways of doing this:

left and right Riemann sums, the Midpoint Rule and the Trapezoid Rule.
h := n -> (b-a)/n;

X := (k,n) -> a + k*h(n);

LeftSum:= n -> add(f(X(k-1,n))*h(n), k=1..n);

RightSum:= n -> add(f(X(k,n))*h(n), k=1..n);

M := n -> add(f((X(k-1,n)+X(k,n))/2)*h(n), k=1..n);

Mformal := n -> Sum(f((X(k-1,n)+X(k,n))/2)*h(n), k=1..n);

eval(Mformal(n),{a=0,b=1});

T := n -> add((f(X(k-1,n)) + f(X(k,n)))/2 * h(n), k=1..n);

Tformal := n -> Sum((f(X(k-1,n)) + f(X(k,n)))/2 * h(n), k=1..

n);

I took the integral , which should be , and calculated the error (the difference 

between the true value and the approximation) for left and right sums, Midpoint and Trapezoid 
Rules with different values of  from 1 to 20.



(1.5)(1.5)

(1.6)(1.6)

(1.3)(1.3)

(1.4)(1.4)

a := 0: b := 1: f := x -> 1/(x + 1): 

J := int(f(x),x=a..b);

LeftSumErrors := [seq([n, evalf(J - LeftSum(n))], n = 1.. 20)

];

RightSumErrors := [seq([n, evalf(J - RightSum(n))], n = 1.. 

20)];

MidpointErrors := [seq([n, evalf(J - M(n))], n = 1 .. 20)];

TrapezoidErrors := [seq([n, evalf(J - T(n))], n = 1 .. 20)];

The errors all decrease in size, of course, as  increases, but the Midpoint and Trapezoid errors 
decrease faster than the Left and Right Sum errors.  

with(plots):

display(pointplot(LeftSumErrors,colour=red),

pointplot(RightSumErrors,colour=gold),

pointplot(MidpointErrors,colour=green), pointplot

(TrapezoidErrors,colour=blue),axes=box); 



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

It turns out the errors in both Left and Right Sum methods are approximately proportional to , 
while for  Midpoint and Trapezoid they are approximately proportional to .  To see that, one way 
is to plot  or  times the error.

LSn := [seq([n, evalf(J-LeftSum(n))*n], n=1..20)];

RSn := [seq([n, evalf(J-RightSum(n))*n], n=1..20)];

display(pointplot(LSn,colour=red),pointplot(RSn,colour=gold),

axes=box);



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

Mnsq := [seq([n, evalf(J-M(n))*n^2],n=1..20)];

Tnsq := [seq([n, evalf(J-T(n))*n^2],n=1..20)];

display(pointplot(Mnsq,colour=green), pointplot(Tnsq,colour=

blue),axes=box);



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

The theoretical results for the Left Sum and Right Sum are as follows:

If  is continuous, the error in Left Sum is  for some  between  and , the error in 

Right Sum is  (for a different  in the same interval).  Here's how that works in the 

case of the Left Sum (the Right Sum is similar).
Let the minimum and maximum values of  on our interval be  and .  Then at any point  of the 
subinterval  we have 
Integrating this over the subinterval,

Now add these for all  subintervals, remembering that 

(where  is the left sum), i.e. 



(1.3)(1.3)

and since the continuous function  takes on all values between its minimum and its maximum 

somewhere in the interval,  for some  in the interval. 

Here's the theoretical result for the Midpoint and Trapezoid Rules.  Assume  is continuous on the 

interval .  Then the error in the Midpoint Rule is  for some  between  and , 

and the error in the Trapezoid Rule is  (for a different  in the same interval).  If the

assumption that  is continuous is not true, these error estimates might not be true.
Here's an example of a function whose second derivative is not continuous, in fact it doesn't have a 
first derivative at 0.  

f := x -> sqrt(x);

J := int(f(x),x=a..b);

LSn := [seq([n, evalf(J-LeftSum(n))*n], n=1..20)];

RSn := [seq([n, evalf(J-RightSum(n))*n], n=1..20)];

display(pointplot(LSn,colour=red),pointplot(RSn,colour=gold),

axes=box);



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

In this case it looks like the errors in left and right Riemann sums are behaving more or less as they 
should (as a more detailed error analysis would show), but:

Mnsq := [seq([n, evalf(J-M(n))*n^2],n=1..20)];

Tnsq := [seq([n, evalf(J-T(n))*n^2],n=1..20)];

display(pointplot(Mnsq,colour=green), pointplot(Tnsq,colour=

blue),axes=box);



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

These don't appear to be approaching constant values.  In fact, it turns out the dependence on  is 
not like , but .

display(pointplot([seq([n,evalf(J-M(n))*n^1.5],n=1..20)],

colour=green), 

pointplot([seq([n,evalf(J-T(n))*n^1.5],n=1..20)],colour=

blue),axes=box);



(1.3)(1.3)

2 4 6 8 10 12 14 16 18 20

0

Big-O notation
Suppose you want to approximate a quantity , and you can use approximations  depending on 
a positive integer  (e.g. the number of intervals used).  Typically, you know something about how 
the error  depends on .  For example, with the Trapezoid rule (when '' is continuous) we 
know | | is less than some constant times .  We could write this as .  
This  term means "something whose absolute value is less than some constant times  
when  is large".  Similarly, for the left Riemann sum, Here's the definition of 
O:

Let  and  be functions of .  We say  as  if there exist constants  
and  such that  whenever  > .
Note that O is not a function, it's a way of expressing relationships between functions.  
There's a similar notation for functions of  as :  as  if there exist constants 

 and  > 0 such that  whenever . 

Simpson's Rule



(1.3)(1.3)

(3.1)(3.1)

When  is continuous,the Midpoint Rule's error is approximately -1/2 times the Trapezoid Rule's 
error.  This might suggest that a combination of the two rules would cancel out the error (at least 
approximately) and produce a much better approximation.  The appropriate combination is 2/3*
Midpoint + 1/3*Trapezoid.  This is called Simpson's Rule.

f:= 'f': 2/3*M(1)+1/3*T(1);

I'm going to call this the Simpson's Rule approximation for  (rather than ): it uses the same 
three equally-spaced points as the Trapezoid Rule for .  We'll only use  when n is even.

S := n -> add((1/3*f(X(2*k-2,n)) + 4/3*f(X(2*k-1,n)) + 1/3*f

(X(2*k,n))) * h(n), k=1..n/2);

S(2);

S(6);

The theoretical value for the error in Simpson's Rule is .  Thus it is .

f := x -> 1/(x+1): J:= ln(2): Digits:= 20;

SimpsonErrors := [seq([2*j, evalf(J - S(2*j))], j = 1 .. 20)]

;

Sn4 := [seq([2*j, (2*j)^4*evalf(J - S(2*j))], j = 1 .. 20)];



(3.2)(3.2)

(1.3)(1.3)

with(plots): pointplot(Sn4);

10 20 30 40

To get an idea of how much better this is than Left Sum, Right Sum, Midpoint or Trapezoid, let's 
see what  would be needed to have an error less than  in absolute value (without roundoff 
error).
We'll keep Digits = 20, otherwise roundoff error would be a problem.

For the Left Sum with this function , the error was approximately .  So:

solve(.25/n = 10^(-10));

I won't actually calculate a sum with 2.5 billion terms.  It might take a while, and roundoff error 
would be quite severe.



(3.3)(3.3)

(3.5)(3.5)

(3.4)(3.4)

(3.8)(3.8)

(1.3)(1.3)

(3.6)(3.6)

(3.7)(3.7)

For the Trapezoid Rule with this function , the error was approximately .  So:

solve(0.06/n^2 = 10^(-10));

We'd need .
evalf(T(24495)-J);

Well, that's a bit more than .  The  was, after all, only an approximation.  Let's try 

making n a little larger.
evalf(T(25000)-J);

evalf(T(25500)-J);

For the Midpoint Rule, the error was approximately .  So:

solve(0.03/n^2 = 10^(-10));

We'd need .  Again, 
evalf(M(17321)-J);

Again, it really needs to be a little larger.
evalf(M(18000)-J);

For Simpson's Rule, the error was approximately .  So:

solve(0.031/n^4 = 10^(-10));

We'd need n >= 133, actually 134 since n must be even.    
evalf(J - S(134));

Here's a different point of view about the three different rules.  If you were integrating a polynomial,
when would the rule give the correct answer (neglecting round-off error)?  
The Midpoint and Trapezoid rules give the correct answers for polynomials of degree up to 1, but in
general not for higher degrees.

f := unapply(add(c[j]*x^j, j=0..5),x);

J:= int(f(x),x=a..b);



(3.8)(3.8)

(1.3)(1.3)

(3.12)(3.12)

(3.10)(3.10)

(3.11)(3.11)

(3.9)(3.9)

J - T(2);

J - M(2);

The thing to notice is that there is no  or .  So if the polynomial has degree , the error would 
be 0.
Simpson's Rule is exact up to degree 3.

J - S(2);

We could have used this to derive Simpson's Rule in another way.  Suppose we didn't know the 
coefficients, but we knew the general form of the rule we wanted.

rule:= n -> add((d[0]*f(X(2*k-2,n)) + d[1]*f(X(2*k-1,n)) + d

[2]*f(X(2*k,n))) * h(n), k=1..n/2);

J - rule(2);

If we want the rule to give the right answer for polynomials of degree up to 2, we need the 
coefficients of ,  and  here to cancel out.

eqns := { seq(coeff(%, c[j]), j=0..2) };

I'm only doing this for  up to 2, not 3: 
there are only three parameters,  to , so I want three equations. The fact that it is exact for  too 
is an added bonus.

R:= solve(eqns);

f:= 'f': eval(rule(2),R) = S(2);



(3.8)(3.8)

(1.3)(1.3)

Newton-Cotes Rules
This can be generalized.  Let's say I want a rule that uses some linear combination of  for 

.
rule:= k -> add(d[j]*f(X(j,k)), j=0..k) * h(k);

rule(1); rule(2); rule(3);

With  degrees of freedom in choosing the coefficients  I can hope to get the integrals of 

 functions  for  correct.  The result is called a Newton-Cotes rule of order .
eqns:= k -> {seq(eval(int(f(x),x=0..1) - rule(k), f = unapply

(x^j, x)), j=0..k)};

eqns(2);

solve(%);

eqns(3);

solve(%);

NC3 := subs(%, rule(3));

This is sometimes called the "three-eighths rule".  Like Simpson's rule, it is exact for polynomials of
degree 3 but not of degree 4.

eval(NC3-int(f(x),x=0..1), f = unapply(add(c[j]*x^j,j=0..4),

x));



(3.8)(3.8)

(1.3)(1.3)

(4.2)(4.2)

(4.1)(4.1)

What about the 4th order Newton-Cotes rule?
NC4 := subs(solve(eqns(4),{seq(d[j],j=0..4)}),rule(4));

eval(NC4-int(f(x),x=0..1), f = unapply(add(c[j]*x^j,j=0..6),

x));

In general, when k is odd the Newton-Cotes rules of orders  and k are both exact for 
polynomials of degree k but not degree .

These are the "simple" versions of the rules.  For the "compound" version of the order  rule, you 
divide the interval into a number of subintervals that is a multiple of , and use the simple rule on 
the first  intervals, the next , etc.  

It wouldn't be hard to write a function to generate Newton-Cotes rules, but the Student[Calculus1] 
package already has one, called ApproximateInt.

with(Student[Calculus1]):

ApproximateInt(f(x), x=a..b, partition=1,

method=newtoncotes[4]);

ApproximateInt(f(x), x=a..b, partition=2,

method=newtoncotes[4]);

For the Newton-Cotes rule of order k with n intervals (where n is divisible by k), you use
partition = n/k and method = newtoncotes[k].

The error in the Newton-Cotes rule with order k and n intervals is   if k is odd, or 

 if k is even, i.e. it's  where the rule is exact for polynomials of degree up to

.  Let's look at this for  with .  The higher-order rules are so accurate that I need 

to increase Digits (otherwise roundoff error will overwhelm the real error).
Digits := 30:

f := x -> 1/(1+x): J := int(f(x),x=a..b):

NC8Errors := [seq([8*n, evalf(J - ApproximateInt(f(x),x=a..b,

method=newtoncotes[8],partition=n))], n = 1 .. 15)];



(3.8)(3.8)

(1.3)(1.3)

(4.2)(4.2)

(4.3)(4.3)
NC8ScaledErrors:= [seq([t[1],t[2]*t[1]^10],t=NC8Errors)];

with(plots): pointplot(NC8ScaledErrors);



(3.8)(3.8)

(1.3)(1.3)

(4.2)(4.2)

20 40 60 80 100 120

To some extent, the higher the order, the better.  That is, if one method has error estimate  and a 

second has  with , then the second will be more accurate when  is sufficiently large. 

This isn't necessarily true for a fixed , however, because B might be much bigger than A.  In the 
case of the error estimates for Newton-Cotes rules, the coefficient of  depends on the p'th 
derivative of the function f.   So for a function whose higher-order derivatives might grow rapidly, 
higher order might not be better.

Errors for Newton-Cotes rules with fixed n.
I want to look at the errors in Newton-Cotes rules with different orders, all using the same n, for 
some functions on the interval 0 .. 1.
I'll take n to be 36, so the order k can be any factor of 36.  These are the possibilities.

K := [1,2,3,4,6,9,12,18,36];

First I'll use our function .



(3.8)(3.8)

(1.3)(1.3)

(5.1)(5.1)

(4.2)(4.2)

seq(evalf(J - ApproximateInt(f(x),x=0..1,method=newtoncotes[K

[j]],

partition=36/K[j])), j=1..9);

For this function, the higher-order rules turned out to be better.  But if we take an f whose higher 
derivatives grow faster, that might not be true.

f:= x -> 1/(x^2 + 1/100):

J:= int(f(x),x=a..b):

seq(evalf(J - ApproximateInt(f(x),x=a..b,method=newtoncotes[K

[j]],

partition=36/K[j])), j=1..9);

Here the best answer was obtained with k = 1, i.e. the Trapezoid rule. 


