
Lesson 12: More Systems
restart;

A geometry problem
Here's a nice little application of resultants to a geometrical problem. We're given two concentric
circles with radii and . From a given point P at a distance from the centre of the circles, we
want to draw a line intersecting the circles at points and so that the distances and have
a given ratio . How should we do it?

Here's a picture in the case where , , . I'll try for (but this line isn't the one that
achieves that ratio).

with(plots): with(plottools):

display([

 circle([0,0],1),

 circle([0,0],3),

 plot([[2,0],[-2.840,.968]],colour=black),

 plot([[2,0],[0,0],[-.825,.565],[0,0],[-2.840,.968]],

colour=green),

 textplot([[0,-.2,O],[2,0.2,P],[-0.9,0.8,Q[1]],

 [-2.9,1.3,Q[2]]])],

 axes=none, scaling=constrained);

(1.1)(1.1)

O

P

Q1

Q2

A few things to notice about how I drew this picture:
The circles were drawn with a command called circle in the plottools package. You tell it the
coordinates of the centre of the circle (as a list [x,y]) and the radius. You could also give it a
colour option. The default is black.
The labels were printed with the textplot command, which is in the plots package. You
give it a list consisting of x and y coordinates and the text you want it to print, or a list of such
lists. I moved the coordinates slightly off the point I wanted to label, because I didn't want the
label to be actually on the point. The text to print could be a string (enclosed in quotes), or a
Maple expression.
The display command is used to put all the pieces together in one plot.
I gave the display command the option axes = none, because I didn't want axes interfering with
the picture, and scaling = constrained, to make sure the circles look like circles.

Actually, let's write a procedure that will produce the plot for any on the inner circle. We'll give
it as input the angle

drawpicture:= proc(theta)

 uses plots, plottools;

 local x1,y1,yline,x2,y2,x,r;

(1.1)(1.1)

Press Ctrl-T to start a comment. It's ignored by Maple, but should help people understand
the code.
To go back to Maple input, press Ctrl-M.
Another way to produce a comment, staying in the Maple input style, is to start the line with
#
The coordinates of Q1 are x1 and y1.

 x1:= cos(theta);

 y1:= sin(theta);

The equation of the line P Q1 in "point-slope" form is
 (y-0)/(x-2) = slope = (y1-0)/(x1-2)
 yline:= y1*(x-2)/(x1-2);

 Q2 is the intersection of this line with the circle x^2 + y^2 = 9
Its coordinates are x2 and y2.
 x2:= fsolve(x^2 + yline^2 = 9, x = -3 .. 0);

 y2:= eval(yline, x = x2);

r is the ratio of distances P Q1 / P Q2
 r := evalf(sqrt(((x2-2)^2 + y2^2)/((x1-2)^2 + y1^2)));

Finally, draw the picture.
 display([

 circle([0,0],1),

 circle([0,0],3),

 plot([[2,0],[x2,y2]],colour=black),

 plot([[2,0],[0,0],[x1,y1],[0,0],[x2,y2]], colour=green),

 textplot([[0,-.2,O],[2,0.2,P],[x1,y1+0.2,Q[1]],

 [x2,y2+0.2,Q[2]]])],

 axes=none, scaling=constrained, title=(ratio=r));

end proc;

Note that the comments are not part of the Maple output from the procedure definition.
drawpicture(3*Pi/4);

(1.1)(1.1)

O

P

Q1

Q2

ratio = 1.748501716

Here's an animation.
animate(drawpicture,[theta],theta=0..Pi);

(1.1)(1.1)

(1.3)(1.3)

(1.2)(1.2)

O

PQ1Q2

ratio = 5.000000000
q = 0.

Now to translate the geometry into algebra.
Let be the angle , let and . Then by the Law of Cosines,

. Similarly . We want . Now the
first two equations involve a trig function (so not a polynomial), but they are polynomial in terms of
cos(alpha). So we define .

P[1]:= r[1]^2 - (d^2 + s[1]^2 - 2*d*s[1]*a);

P[2]:= r[2]^2 - (d^2 + (s[1]*w)^2 - 2*d*s[1]*w*a);

These are polynomials in and . They should both be 0 at the same when is the cosine of the
angle we're looking for.

resultant(P[1],P[2],s[1]);

(1.1)(1.1)

(1.4)(1.4)

(1.6)(1.6)

(1.5)(1.5)

This should be 0.
S:=solve(%,a);

It looks like two solutions, but not really: and give the same solution as and . On the
other hand, the angles and both have the same cosine, which means you can reflect the picture
across the x axis. Here is in the case , , , .

a1:= eval(S[1],{r[1]=1,r[2]=3,d=2,w=2});

alpha1:= arccos(a1);

To draw the picture we need the angle . Some trig (the law of sines) relates to .

(1.1)(1.1)

(1.7)(1.7)

q a

p Ka Kq

1

2

thetaeq:= sin(alpha1)/1 = sin(Pi-alpha1 - theta1)/2;

t1:= solve(thetaeq,theta1);

drawpicture(t1);

(1.1)(1.1)

(1.10)(1.10)

(1.8)(1.8)

(1.9)(1.9)

O

P

Q1

Q2

ratio = 3.666666666

Oops: wrong solution.
solve(thetaeq, theta1,AllSolutions);

Of course a multiple of won't make a difference.
eval(%,_Z1=0);

thetas:= eval(%,_B1=0), eval(%,_B1=1);

drawpicture(thetas[2]);

(1.1)(1.1)

(1.11)(1.11)

(1.12)(1.12)

(1.13)(1.13)

O

P

Q1

Q2

ratio = 2.000000000

Here's a more "algebraic" way of getting from :
The line has equation

eqline:= y = tan(alpha1)*(2-x);

Where does this intersect the smaller circle?
intersects1:= solve({eqline, x^2 + y^2 = 1});

Two solutions, of course. One is right. Where does it intersect the larger circle?
intersects2:= solve({eqline, x^2 + y^2 = 9});

What are the distances to the point P?
distances1:= seq(eval(sqrt((2-x)^2 + y^2), intersects1[i]), i

= 1..2);

(1.1)(1.1)

(1.14)(1.14)

(1.17)(1.17)

(1.15)(1.15)

(1.16)(1.16)

distances2:= seq(eval(sqrt((2-x)^2 + y^2), intersects2[i]), i

= 1..2);

One of the distances2 must be 2 times one of the distances1. We really don't need Maple to tell us
which, but let's see if it can do that. The command is can be used (sometimes) to tell if an equation
is true. I'll put an if statement inside two for loops
to test all the possible pairs.

for i from 1 to 2 do

 for j from 1 to 2 do

 if is(distances2[j] = 2*distances1[i]) then

 print(i,j)

 end if

 end do

end do:

There's a slightly subtle point here. It wouldn't have worked if my conditional expression was just
distances2[j] = 2*distances1[i]. This is because distances2[1] and 2*distances1[1] are not literally
the same, they are just mathematically equivalent.

distances2[1] = 2*distances1[1];

if distances2[1] = 2*distances2[1]

 then yes

 else no

end if;
no

if A = B ... would just test whether A and B are literally the same. The is command tries harder to
test whether the two things really are equal. Even it is not perfect: testing whether two expressions
are equivalent can be a difficult task.
Anyway, we want the first point in intersects1 and the first in intersects2.

theta:= eval(arctan(y/x),intersects1[1]);

drawpicture(theta);

(1.1)(1.1)

(1.18)(1.18)

O

P

Q1

Q2

ratio = 2.177042958

Oops: still not right. The wrong angle with that tan. There is a two-parameter form of arctan that is
better: gives the angle from the positive axis to the point .

theta:= eval(arctan(y, x), intersects1[1]);

drawpicture(theta);

(1.1)(1.1)

O

P

Q1

Q2

ratio = 2.000000000

Three equations in three variables
After such success with two polynomials in two variables, what about more polynomials in more
variables, say three?
Consider polynomials , , . We might try something like the
following:

. This is 0 for any such that, for some , both
 and are 0.

. This is 0 for any such that, for some , both
 and are 0.

Then solve the two-variable system { , } as before.

Finally, find z by using those values of x and y in the equations =0, ,

Unfortunately this doesn't always work.
p1 := 1-z-y-y*z-y^2+3*x*z-x*y+7*x^2;

(1.1)(1.1)

p2 := 2-z+z^2+x*z-x*y;

p3 := -1+2*z^2-y-y*z+y^2-x*z;

p4 := resultant(p1, p2, z);

p5 := resultant(p1, p3, z);

S:= solve({p4,p5},{x,y});

(1.1)(1.1)

(2.4)(2.4)

(2.3)(2.3)

(2.2)(2.2)

(2.1)(2.1)

Ignoring the complicated solution using RootOf, notice the two nice solutions and

. Do these lead to solutions of the original system?

eval([p1,p2,p3],{x=1,y=2});

Clearly this won't work: z would have to be 0 for to be 0, but that won't work in .

eval([p1,p2,p3],{x=-1/5,y=-8/5});

We can use resultant to see if the last two have any roots in common.
resultant(%[2],%[3],z);

17917
625

No they don't. What went wrong?
 = 0 for those such that, for some , both and are 0.
 = 0 for those such that, for some , both and are 0.

The trouble is that the z that makes = 0 might not be the same z
that makes = 0.
In this particular example, with and ,
for z = 0 we have = 0, but ,
while for z = 1 we have = 0 but .
 There are more advanced methods that can be used, e.g. Gröbner bases, but we won't be able to go
into that. In any case, solve does know about those methods, and can be used.

solve({p1=0, p2=0, p3=0});

(1.1)(1.1)

(2.4)(2.4)

(2.5)(2.5)
evalf([allvalues(%)]);

(1.1)(1.1)

(2.4)(2.4)

(2.6)(2.6)

(3.2)(3.2)

(3.3)(3.3)

(3.1)(3.1)

(2.5)(2.5)

remove(has,%,I);

It turns out this system of equations has no real solutions, just complex ones.

Vectors and Matrices

In preparation for introducing Newton's method for systems of equations in several variables, I want
to show how Maple deals with vectors and matrices. Here's a 3-component column vector in Maple:

C := < a, b, c >;

Actually, I should say that's a Vector. There are two separate data structures in Maple, vector and
Vector, and similarly there are both matrix and Matrix. The lower-case vector and matrix
structures are from an old package called linalg, which is pretty much obsolete, but has been kept
around for the sake of backwards compatibility (i.e. people still have programs that were written in
older versions of Maple, and want them to still work). We'll only use the new-style structures.

Here's a row Vector. In output it looks rather like a list, except that the entries are separated by
spaces instead of commas.

R := < a | b | c>;

So within the "<" and ">", "," is used to separate items vertically and "|" to separate them
horizontally. Here's a 3 x 3 Matrix. You can think of it as three column Vectors side by side.

M := <<1,2,3>|<4,5,6>|<7,8,10>>;

(1.1)(1.1)

(3.10)(3.10)

(2.4)(2.4)

(3.4)(3.4)

(3.9)(3.9)

(3.5)(3.5)

(3.8)(3.8)

(3.7)(3.7)

(3.6)(3.6)

(2.5)(2.5)

(3.11)(3.11)

The same Matrix could have been entered by rows instead of by columns:
<<1|4|7>,<2|5|8>,<3|6|10>>;

You can add or subtract Vectors and Matrices of the same shape using + or -, as you might expect.
<<a,b>|<c,d>> + <<1|2>,<3|4>>;

<a,b> + <c|d>;

Error, (in rtable/Sum) invalid arguments

I did say "the same shape". You can't add a column Vector and a row Vector, they have different
shapes. You could convert from one to the other: this operation is called "transpose", and can be
done with ̂ %T:

<a,b>^%T; <a,b>^%T + <c|d>;

You can multiply or divide Matrices and Vectors by scalars using * or /, as you might expect.
3*<a|b> + <c|d>/2;

But the multiplication sign for Matrices and Vectors is . instead of *. Of course, what you multiply
should be compatible: number of columns of the Matrix or Vector on the left must be equal to the
number of rows of the one on the right.

R . C;

C . R;

M . R;

Error, (in LinearAlgebra:-Multiply) cannot multiply a Matrix

and row Vector

R . M;

M . C;

(3.12)(3.12)

(1.1)(1.1)

(3.13)(3.13)

(2.4)(2.4)

(3.16)(3.16)

(3.14)(3.14)

(3.17)(3.17)

(3.15)(3.15)

(2.5)(2.5)

(3.11)(3.11)

You can take an integer power of a square Matrix using .̂
M^2;

That extends to negative powers too if the Matrix is invertible.
M^(-1);

% . M;

<<1,1>|<1,1>>^(-1);

Error, (in rtable/Power) singular matrix

There are very big and capable LinearAlgebra and VectorCalculus packages that can do lots of
things with Vectors and Matrices, but we won't need to go much beyond this very basic level.

I'll need one command from the VectorCalculus package: Jacobian.
Consider a column Vector V whose components are expressions depending on several variables.

V := <f(x,y,z), g(x,y,z), h(x,y,z)>;

The Jacobian of F is the Matrix of partial derivatives of the components of F with respect to each of
the variables. Since this is the only member of the VectorCalculus package I'll want to use today,
and I want to avoid some side-effects of VectorCalculus, I'll only take this one procedure from
VectorCalculus. You can do that with an extra input to with.

with(VectorCalculus, Jacobian);

J := Jacobian(V,[x,y,z]);

(1.1)(1.1)

(2.4)(2.4)

(3.19)(3.19)

(3.17)(3.17)

(2.5)(2.5)

(3.11)(3.11)

(3.18)(3.18)

Notice that the rows of J correspond to the components of V, and the columns correspond to the
variables. You could think of each row of J as the gradient vector of a component of V.
It will be convenient for us to consider functions from Vectors to Vectors. You can define these like
this:

F := X -> <X[1] + X[2]*X[3], X[2] - X[1]^2, cos(X[3])>;

F(<a,b,c>);

Maple objects introduced in this lesson

is
arctan
Matrix
Vector
<...> , ,, | for constructing Vectors and Matrices
. for multiplying Vectors and Matrices
^%T
LinearAlgebra package
VectorCalculus package
Jacobian (in VectorCalculus package)

