Zebra Danio
 Calculus to the Rescue

"Suppose", says Danny to himself, "I swim at an angle β from the negative x axis, where $0<\beta \leq \pi / 2$. To reach $y=S / 2$ I must swim a distance of $S / 2 \csc (\beta)$. Here's a diagram: I'm at D, the edge of the shark is at A, and I have to get to B before the shark does."

"If I swim at speed w, this will take time $S \csc (\beta) /(2 w)$. If $0<\beta<\pi / 2, \csc (\beta)>1$, so that will take longer than if I went directly in the y direction with $\beta=\pi / 2$; but since it also takes me a distance $S \cot (\beta) / 2$ to the left, the shark will also have longer to go, namely $x+S \cot (\beta) / 2$. The shark's speed is v, so this takes time $x / v+S \cot (\beta) /(2 v)$. I will survive if $S \csc (\beta) /(2 w)<x / v+S \cot (\beta) /(2 v)$, i.e.

$$
-\frac{2 x}{S}<\cot (\beta)-\frac{v \csc (\beta)}{w}
$$

"It will be useful to write $w=c v$, i.e. c is the ratio of my speed to the shark's speed, so the condition becomes

$$
-\frac{2 x}{S}<\cot (\beta)-\frac{\csc (\beta)}{c}
$$

"Is this possible? I want to choose β in the interval $0<\beta \leq \pi / 2$ to maximize

$$
f(\beta)=\cot (\beta)-\frac{\csc (\beta)}{c}
$$

which will ensure that I survive (I hope) with as much time to spare as possible. Differentiating, I get

$$
f^{\prime}(\beta)=-\csc ^{2}(\beta)+\frac{\csc (\beta) \cot (\beta)}{c}=\frac{\cos (\beta)-c}{c \sin ^{2}(\beta)}
$$

"The only critical point in the interval is $\beta=\arccos (c)$. I'll call this β_{0}. Note that this is defined since $0<c<1$. It's the only critical point in the interval, and I'm pretty sure it's a
maximum rather than a minimum (if I wasn't swimming for my life right now I might prove that using the Second Derivative Test). Note that

$$
\sin (\arccos (c))=\sqrt{1-c^{2}}, \quad \tan (\arccos (c))=\frac{\sqrt{1-c^{2}}}{c}
$$

So

$$
f\left(\beta_{0}\right)=\frac{c}{\sqrt{1-c^{2}}}-\frac{1}{c \sqrt{1-c^{2}}}=-\frac{\sqrt{1-c^{2}}}{c}
$$

"Using this optimal β_{0}, I will survive if $-\frac{2 x}{S}<-\frac{\sqrt{1-c^{2}}}{c}$, i.e.

$$
\frac{2 x}{S}>\frac{\sqrt{1-c^{2}}}{c}
$$

"Oops: now I have a problem. I know my own speed w, but I don't know the shark's speed v, so I don't know c. Or do I? What I do know are the visual angle α and the rate of change of that angle. Let's look again at the formula for the visual angle, which I'll write in slightly different form:

$$
\cot (\alpha / 2)=\frac{2 x}{S}
$$

"So from the initial visual angle $\alpha=0.6$ I can compute $2 x / S=\cot (0.3)=3.232728144$ approximately. Differentiating, I get

$$
-\frac{\csc ^{2}(\alpha / 2)}{2} \frac{d \alpha}{d t}=\frac{2}{S} \frac{d x}{d t}
$$

"Initially, when I was at rest, I had $d x / d t=-v$ and $d \alpha / d t=-0.06$. Plugging in these, I get

$$
-0.03 \csc ^{2}(\alpha / 2)=-\frac{2 v}{S}
$$

"But now I'm moving at speed $w=c v$, so I have $d x / d t=w-v=-(1-c) v$ and $d \alpha / d t=-0.04$. Plugging in these, I get

$$
-0.02 \csc ^{2}(\alpha / 2)=-\frac{2(1-c) v}{S}
$$

"These measurements were taken at slightly different times, but not enough for α to have changed appreciably. So I can compute

$$
1-c=\frac{0.02}{0.03}=\frac{2}{3}, \quad c=1-\frac{2}{3}=\frac{1}{3}
$$

So $\beta_{0}=\arccos (1 / 3)=1.230959417$ radians or about 70.53 degrees. That's the direction I need to go. And since

$$
\frac{\sqrt{1-c^{2}}}{c}=\frac{\sqrt{1-(1 / 3)^{2}}}{1 / 3}=\sqrt{8}<3.232728144 \ldots
$$

"Yes! I will survive!"

