
Zebra Danio

Calculus to the Rescue

“Suppose”, says Danny to himself, “I swim at an angle β from the negative x axis, where
0 < β ≤ π/2. To reach y = S/2 I must swim a distance of S/2 csc(β). Here’s a diagram: I’m at D,
the edge of the shark is at A, and I have to get to B before the shark does.”
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“If I swim at speed w, this will take time S csc(β)/(2w). If 0 < β < π/2, csc(β) > 1,
so that will take longer than if I went directly in the y direction with β = π/2; but since it
also takes me a distance S cot(β)/2 to the left, the shark will also have longer to go, namely
x + S cot(β)/2. The shark’s speed is v, so this takes time x/v + S cot(β)/(2v). I will survive if
S csc(β)/(2w) < x/v + S cot(β)/(2v), i.e.
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“It will be useful to write w = cv, i.e. c is the ratio of my speed to the shark’s speed, so the
condition becomes
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“Is this possible? I want to choose β in the interval 0 < β ≤ π/2 to maximize

f(β) = cot(β) −
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c

which will ensure that I survive (I hope) with as much time to spare as possible. Differentiating, I
get
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“The only critical point in the interval is β = arccos(c). I’ll call this β0. Note that this is
defined since 0 < c < 1. It’s the only critical point in the interval, and I’m pretty sure it’s a



maximum rather than a minimum (if I wasn’t swimming for my life right now I might prove that
using the Second Derivative Test). Note that
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“Using this optimal β0, I will survive if −
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“Oops: now I have a problem. I know my own speed w, but I don’t know the shark’s speed
v, so I don’t know c. Or do I? What I do know are the visual angle α and the rate of change of
that angle. Let’s look again at the formula for the visual angle, which I’ll write in slightly different
form:
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“So from the initial visual angle α = 0.6 I can compute 2x/S = cot(0.3) = 3.232728144
approximately. Differentiating, I get
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“Initially, when I was at rest, I had dx/dt = −v and dα/dt = −0.06. Plugging in these, I get

−0.03 csc2(α/2) = −
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“But now I’m moving at speed w = cv, so I have dx/dt = w−v = −(1−c)v and dα/dt = −0.04.
Plugging in these, I get
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2(1 − c)v

S

“These measurements were taken at slightly different times, but not enough for α to have
changed appreciably. So I can compute
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So β0 = arccos(1/3) = 1.230959417 radians or about 70.53 degrees. That’s the direction I need to
go. And since √
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“Yes! I will survive!”


