Estimates of the form
\[\|f\|_p \leq A(N) \left(\sum_{j=1}^{N} \|f_j\|_p^p \right)^{1/p} \quad (p > 2) \]
and
\[\|f\|_p \leq B(N) \left(\sum_{j=1}^{N} \|f_j\|_p^2 \right)^{1/2}, \]
where \(f = \sum_{j=1}^{N} f_j \), are ubiquitous in decoupling theory. In this lecture, we will discuss how to convert between such estimates using interpolation.

Note. In the following, if \(X \subseteq \mathbb{R}^n \), then \(L^p(X) \) will denote the vector space \(L^p(X, \Sigma, \mu) \), where \(\Sigma \) is the collection of Lebesgue-measurable subsets of \(X \) and \(\mu \) is Lebesgue measure. If \(I \subseteq \mathbb{N} \), then \(\ell^p(I) \) will denote the vector space \(L^p(I, \mathcal{P}(I), \mu) \), where \(\mu \) is counting measure. When the underlying set is clear from the context, we will write \(L^p \) (resp. \(\ell^p \)) for \(L^p(X) \) (resp. \(\ell^p(I) \)).

The Riesz-Thorin theorem

Let us begin by recalling the Riesz-Thorin theorem.

Theorem 1.1 (Riesz-Thorin). Let \(X \) and \(Y \) be \(\sigma \)-finite measure spaces, and \(p_0, p_1, q_0, q_1 \in [1, \infty] \). Suppose that \(T : L^{p_0}(X) + L^{p_1}(X) \to L^{q_0}(Y) + L^{q_1}(Y) \) is a linear operator with
\[\|T\|_{L^{p_0}(X) \to L^{q_0}(Y)} \leq M_0 \quad \text{and} \quad \|T\|_{L^{p_1}(X) \to L^{q_1}(Y)} \leq M_1. \]
Then for all \(\theta \in (0,1) \), the operator \(T \) maps \(L^{p_\theta}(X) \) into \(L^{q_\theta}(Y) \) with
\[\|T\|_{L^{p_\theta}(X) \to L^{q_\theta}(Y)} \leq M_0^{1-\theta} M_1^\theta, \]
where
\[\frac{1}{p_\theta} = \frac{1 - \theta}{p_0} + \frac{\theta}{p_1} \quad \text{and} \quad \frac{1}{q_\theta} = \frac{1 - \theta}{q_0} + \frac{\theta}{q_1}. \]

Remark. If \(T : L^p(X) \to L^q(Y) \) is a bounded linear operator, we say that \(T \) is of (strong) type \((p,q) \). The Riesz-Thorin theorem implies that the set of all points \(\left(\frac{1}{p}, \frac{1}{q} \right) \) in the unit square such that \(T \) is of type \((p,q) \) (sometimes called the Riesz diagram of \(T \)) is a convex set.
Among other results, the Riesz-Thorin theorem can be used to prove the Hausdorff-Young inequality and Young’s convolution inequality; see Bergh [1, Section 1.2]. As an illustration, we will use it to prove finite-dimensional norm inequalities, although these can be proven using more elementary methods (e.g., Hölder’s inequality).

Example 1.2. Let $X = Y = [N] := \{1, 2, \ldots, N\}$ and suppose that $1 \leq q \leq p \leq \infty$. Since $\|x\|_{q_I} = \sum_{j=1}^N |x_j|^q \leq N \|x\|_{q,\infty}$, we have $\|I\|_{\ell^q \to \ell^q} \leq N^{1/q}$ (which also holds when $q = \infty$). We also have $\|I\|_{\ell^p \to \ell^q} \leq 1$, so $\|I\|_{\ell^p \to \ell^q} \leq (N^{1/q})^{1-\theta} 1^\theta = (N^{1/q})^{1-q/p} = N^{1-1/p}$.

On the other hand, if $1 \leq p \leq q \leq \infty$, we begin by observing that $\|x\|_{q,\infty} = \max_{1 \leq j \leq N} |x_j|^p \leq \sum_{j=1}^N |x_j|^p = \|x\|_{p_I}$, which implies that $\|I\|_{\ell^p \to \ell^\infty} \leq 1$ (which also holds when $p = \infty$). We also have $\|I\|_{\ell^p \to \ell^p} \leq 1$, so $\|I\|_{\ell^p \to \ell^p} \leq 1$.

Together these inequalities imply that

$$\|x\|_{\ell^p} \leq \|x\|_{\ell^q} \leq N^{1/p-1/q} \|x\|_{\ell^q} \quad (\ast)$$

for all $x \in \mathbb{C}^N$ if $1 \leq p \leq q \leq \infty$.

Interpolation spaces

The idea of ‘interpolation’ between vector spaces can be greatly generalized. In this general setting, the language of category theory – briefly reviewed below – is used, although the underlying interpolation techniques make no use of the theory proper. In particular, for all intents and purposes, one may assume that “object” refers to a normed vector space (or a pair of such – see, for example, Definition 1.5) and “morphism” to a bounded linear operator.

A category \mathcal{C} consists of a class of objects and a class of morphisms (also called arrows) between the objects such that if f is a morphism from A to B and g is a morphism from B to C, there exists a morphism $g \circ f$ (also written gf) from A to C. This binary operation of composing morphisms is required to be associative; and for every object A, there must exist a morphism id_A (also written 1_A) from A to itself satisfying $\text{id}_A \circ f = f$ and $g \circ \text{id}_A = g$ for all morphisms f and g to and from A. If f is a morphism from A to B, we write $f : A \to B$.

A subcategory \mathcal{S} of a category \mathcal{C} consists of a subclass of the objects of \mathcal{C} and a subclass of the morphisms of \mathcal{C} that constitute a category in and of themselves. If \mathcal{S} contains all the morphisms that were originally in \mathcal{C} between its own objects, it is called a full subcategory.

If \mathcal{C} and \mathcal{D} are categories, a (covariant) functor F from \mathcal{C} to \mathcal{D} is a map that associates each object A in \mathcal{C} with an object $F(A)$ in \mathcal{D} and each morphism $f : A \to B$ in \mathcal{C} with a morphism $F(f) : F(A) \to F(B)$ in \mathcal{D}. We require that functors preserve compositions of morphisms and identity morphisms (i.e., $F(f \circ g) = F(g) \circ F(f)$ for all morphisms f, g in \mathcal{C} and $F(\text{id}_A) = \text{id}_{F(A)}$ for all objects A in \mathcal{C}).

Definition 1.3. Let A_0 and A_1 be topological vector spaces. Then A_0 and A_1 are said to be compatible if they are continuously embedded in some common Hausdorff topological vector space.

Example 1.4. If $p_0, p_1 \in [1, \infty]$, then $L^{p_0}(\mathbb{R}^n)$ and $L^{p_1}(\mathbb{R}^n)$ are compatible, being continuously embedded in $L^0(\mathbb{R}^n)$ (the vector space of measurable functions on \mathbb{R}^n) equipped with the topology of convergence in measure (see Fremlin [3, Section 245]).

Recall that this topology is the one induced by the family of pseudometrics $\{\rho_E : |E| < \infty\}$, where $\rho_E(f, g) := \int_E \min\{|f-g|, 1\} \, dx$. It is Hausdorff because the Lebesgue measure on \mathbb{R}^n is semifinite.
If A_0 and A_1 are compatible normed vector spaces, it can be shown that $A_0 \cap A_1$ and $A_0 + A_1$ are normed vector spaces with
\[
\|x\|_{A_0 \cap A_1} := \max \{\|x\|_{A_0}, \|x\|_{A_1}\} \quad \text{and} \quad \|x\|_{A_0 + A_1} := \inf_{x = x_0 + x_1, x_0 \in A_0, x_1 \in A_1} \|x_0\|_{A_0} + \|x_1\|_{A_1}.
\]

Moreover, if A_0 and A_1 are complete (i.e., are Banach spaces), then so are $A_0 \cap A_1$ and $A_0 + A_1$. The inclusions $A_0 \cap A_1 \subseteq A_0, A_1 \subseteq A_0 + A_1$ are also continuous. (See Bergh [1] Lemma 2.3.1 for proofs of these assertions.)

Henceforth, we will restrict our attention to the category \mathcal{N} of normed vector spaces, whose morphisms are the bounded linear operators. In addition, whenever we consider a subcategory \mathcal{C} of \mathcal{N}, we will assume that it is full.

Definition 1.5. Let \mathcal{C} be a subcategory of \mathcal{N}. The category \mathcal{C}_1 of compatible couples in \mathcal{C} is the category whose objects are all pairs $\vec{A} = (A_0, A_1)$ such that A_0 and A_1 are compatible spaces in \mathcal{C} whose intersection and sum are also in \mathcal{C}, and whose morphisms $T : (A_0, A_1) \to (B_0, B_1)$ are all (bounded) linear operators from $A_0 + A_1$ to $B_0 + B_1$ whose restrictions $T|_{A_0} : A_0 \to B_0$ and $T|_{A_1} : A_1 \to B_1$ are bounded linear operators in \mathcal{C}.

Definition 1.6. Let \mathcal{C} be a subcategory of \mathcal{N} and $\vec{A} = (A_0, A_1)$ be a couple in \mathcal{C}_1. An intermediate space A between A_0 and A_1 (or with respect to \vec{A}) is a space in \mathcal{C} such that $A_0 \cap A_1 \subseteq A \subseteq A_0 + A_1$ with continuous inclusions.

Example 1.7. If $p_0, p_1 \in [1, \infty]$ and p is between p_0 and p_1, then $L^p(\mathbb{R}^n)$ is an intermediate space between $L^{p_0}(\mathbb{R}^n)$ and $L^{p_1}(\mathbb{R}^n)$ (taking, for instance, \mathcal{C} to be all of \mathcal{N}).

Definition 1.8. Let \vec{A} and \vec{B} be couples in \mathcal{C}_1. Two spaces A and B in \mathcal{C} are said to be interpolation spaces with respect to \vec{A} and \vec{B} if A and B are intermediate spaces with respect to \vec{A} and \vec{B}, respectively, and if $T : A \to B$ is a bounded linear operator whenever $T : A \to B$ is.

We shall be particularly interested in the case where we can say the following about the norm of T as an operator from A to B.

Definition 1.9. If the interpolation spaces A and B satisfy $\|T\|_{A \to B} \lesssim \|T\|_{A_0 \to B_0}^{1-\theta} \|T\|_{A_1 \to B_1}^\theta$ for some $\theta \in (0, 1)$, then they are said to be of exponent θ. If this bound holds with \lesssim in place of \lesssim, then they are said to be exact of exponent θ.

Example 1.10. The Riesz-Thorin theorem states that $L^{p_0}(X)$ and $L^{p_1}(Y)$ are exact interpolation spaces of exponent θ with respect to $(L^{p_0}(X), L^{p_1}(X))$ and $(L^{p_0}(Y), L^{p_1}(Y))$.

Interpolation functors

Having established the notion of interpolation spaces, we now turn to their construction.

Definition 1.11. Let \mathcal{C} be a subcategory of \mathcal{N}. An interpolation functor is a functor F from \mathcal{C}_1 to \mathcal{C} such that if \vec{A} and \vec{B} are couples in \mathcal{C}_1, then $F(\vec{A})$ and $F(\vec{B})$ are interpolation spaces with respect to \vec{A} and \vec{B}. In addition, we must have $F(T) = T$ for all morphisms T in \mathcal{C}_1.

If, moreover, $F(\vec{A})$ and $F(\vec{B})$ are (exact) of exponent θ for all \vec{A} and \vec{B}, we say that F is (exact) of exponent θ.
Example 1.12. The functors $\Delta(\bar{A}) := A_0 \cap A_1$ and $\Sigma(\bar{A}) := A_0 + A_1$ are interpolation functors.

The interpolation functor we will use to derive decoupling estimates is denoted C_θ and is a functor from B_1 to B, where B is the category of Banach spaces and $\theta \in (0, 1)$. The space $C_\theta(\bar{A})$ is commonly abbreviated as $\bar{A}[\theta]$. We will treat this functor as a ‘black box”; its definition can be found in Bergh [1, Section 4.1]. Its significance is owed to the following properties.

Theorem 1.13. The functor C_θ is exact of exponent θ for all $\theta \in (0, 1)$.

Proof. See Bergh [1, Theorem 4.1.2].

Theorem 1.14. Let X be a σ-finite measure space and $p_0, p_1 \in [1, \infty]$. Then

$$(L^{p_0}(X), L^{p_1}(X))[\theta] = L^{p_\theta}(X)$$

for all $\theta \in (0, 1)$.

Proof. See Bergh [1, Theorem 5.1.1].

Definition 1.15. Let A be a Banach space. For $p \in [1, \infty]$, the space $\ell^p(A)$ is the normed vector space of sequences $\{a_j\}_{j=1}^{\infty} \subseteq A$ such that

$$\|\{a_j\}\|_{\ell^p(A)} := \left(\sum_{j=1}^{\infty} \|a_j\|^p_A\right)^{1/p} < \infty,$$

with the obvious modification if $p = \infty$.

Remark. It can be shown that $\ell^p(A)$ is itself a Banach space. In fact, such spaces are special cases of Bochner spaces $L^p(X; A)$ – which are Banach spaces for all p – where the sum above is replaced by an integral over some measure space X (with some measurability restrictions on the functions being integrated).

Theorem 1.16. Let \bar{A} be a compatible couple of Banach spaces and $p_0, p_1 \in [1, \infty]$. Then

$$(\ell^{p_0}(A_0), \ell^{p_1}(A_1))[\theta] = \ell^{p_\theta}((A_0, A_1)[\theta])$$

for all $\theta \in (0, 1)$.

Proof. See Bergh [1, Theorem 5.1.2].

(The proof is essentially an extension of the usual proof of the Riesz-Thorin theorem to accommodate analytic Banach space-valued functions defined on the strip $\{z \in \mathbb{C} : 0 \leq \Re(z) \leq 1\}$.)

Applications of interpolation to decoupling estimates

Finally, we recognize that the expressions on the right-hand sides of (1) and (2) are $\ell^p(L^p)$ and $\ell^2(L^p)$ norms, respectively, with sequences replaced by N-tuples in Definition 1.15. The estimates can therefore be written equivalently as

$$\|T\|_{\ell^p(L^p) \to L^p} \leq A(N) \quad (p > 2)$$
and
\[\|T\|_{\ell^2(L^p) \to L^p} \leq B(N), \]
where \(T\vec{f} := T((f_1, \ldots, f_N)) := \sum_{j=1}^N f_j \). In the following examples, “interpolating” refers to the application of the theorems in the preceding section.

Example 1.17. By the triangle inequality, \(\|T\|_{\ell^1(L^p) \to L^p} \leq 1 \). Interpolating with respect to \((\ell^p(L^p), \ell^1(L^p))\) and \((L^p, L^p)\) given (1) yields (2) with \(B(N) = A(N)^{1-\theta}1^\theta = A(N)^{p'/2} \) (which is a better constant than \(A(N) \)).

Example 1.18. By (2) with \(p = 1 \) and \(q = \infty \), we have \(\|T\|_{\ell^\infty(L^p) \to L^p} \leq N \|T\|_{\ell^\infty(L^p)} \), which implies that \(\|T\|_{\ell^\infty(L^p) \to L^p} \leq N \). Interpolating with respect to \((\ell^\infty(L^p), \ell^2(L^p))\) and \((L^p, L^p)\) given (2) yields (1) with \(A(N) = N^{1-\theta}B(N)^\theta = N^{1-2/p}B(N)^{2/p} \), which is a worse constant than \(B(N) \) if \(B(N) \lesssim N \). But (2) holds in general with \(B(N) = N^{1/2} \), so we incur a loss when converting from (2) to (1).

Alternatively, we can apply (2) directly to \(\vec{x} = (\|f_1\|_p, \ldots, \|f_N\|_p) \), which immediately gives \(A(N) = N^{1/2-1/p}B(N) \). This is always worse than \(B(N) \), but is actually better than \(N^{1-2/p}B(N)^{2/p} \) for \(B(N) \lesssim N^{1/2} \).

Example 1.19. By the triangle inequality, \(\|T\|_{\ell^2(L^\infty) \to L^\infty} \leq \sqrt{N} \). If the \(f_j \) are pairwise orthogonal in \(L^2 \), we also have \(\|T\|_{\ell^2(L^2) \to L^2} \leq 1 \) by the Pythagorean theorem. Interpolating with respect to \((\ell^2(L^\infty), \ell^2(L^2))\) and \((L^\infty, L^2)\) yields \(\|T\|_{\ell^2(L^p) \to L^p} \leq (N^{1/2})^{1-\theta}1^\theta = N^{1/2-1/p} \) for all \(p \in [2, \infty] \).

References