1. If \(E \) is a subset of a metric space \(X \), define the boundary of \(E \), \(\partial E \), by

\[
\partial E = \{ x \in X : \forall r > 0, N_r(x) \cap E \neq \emptyset \text{ and } N_r(x) \cap E^c \neq \emptyset \}.
\]

(a) Prove that \(\partial E = \overline{E} - E^o \).
(b) Prove that \(E \) is open iff \(E \cap \partial E = \emptyset \).
(c) Prove that \(E \) is closed iff \(\partial E \subset E \).
(d) If \(X = \mathbb{R} \), find \(\partial \mathbb{Q} \).
(e) If \(X = \mathbb{R} \), find \(\partial (0, 1) \). If \(X = \mathbb{C} \), find \(\partial (0, 1) \).

2. Let \(c_0 \) be the space of real-valued sequences \(\{x_n\} \) which converge to zero, equipped with the metric \(d(\{x_n\}, \{y_n\}) = \sup_n |x_n - y_n| \). The fact that \(d \) is a metric on \(c_0 \) follows from Q 3(a) on Problem Set 4.

(a) Let \(e_k \) denote the sequence in \(c_0 \) which is identically 0, except for the \(k \)th entry which equals 1. Prove that \(\{e_k\} \) is a bounded sequence in \(c_0 \) (i.e., it takes values in a bounded set) which has no convergent subsequence.
(b) Prove that the closed unit ball in \(c_0 \), \(B = \{p \in c_0 : d(0, p) \leq 1\} \) (here 0 denotes the sequence consisting of all 0’s) is not compact.

3. Prove that the metric space \((c_0, d) \) defined in the previous question is complete.

4. Evaluate the following and justify your answers:

(a) \(\limsup_{n \to \infty} (-1)^n \frac{n^2 + 1}{2n^2 + 1} \).
(b) \(\liminf_{n \to \infty} \frac{\sin(\pi n/8)n^n}{n!} \).

5. If \(\{a_n\} \) and \(\{b_n\} \) are real-valued sequences, and \(\{b_n\} \) is bounded, prove that

\[
\limsup_{n \to \infty} (b_n - a_n) \leq \limsup_{n \to \infty} b_n - \liminf_{n \to \infty} a_n.
\]

6. The following questions from the textbook should be done but are NOT to be handed in: Chapter 2 # 23, 24, 25, 26; Chapter 3 # 4.