1. (6 marks) For any two non-empty sets \(E, F \subset \mathbb{R} \), define \(\text{dist}(E, F) = \inf \{|x - y| : x \in E, y \in F\} \). Let \(E, F \subset \mathbb{R} \) be two non-empty closed sets with \(E \) bounded. Prove that there are points \(x \in E \) and \(y \in F \) such that \(\text{dist}(E, F) = |x - y| \).

Let \(d = \text{dist}(E, F) \). For each \(n \in \mathbb{N} \), we can choose \(x_n \in E \) and \(y_n \in F \) such that \(|x_n - y_n| \leq d + \frac{1}{n} \). Since \(E \subset \mathbb{R} \) is bounded, the sequence \(\{x_n\} \) has a convergent subsequence \(\{x_{n_k}\}_{k=1}^{\infty} \), with \(x_{n_k} \to x \) for some \(x \in \mathbb{R} \). Since \(E \) is also closed, we have \(x \in E \).

Let \(z_k = x_{n_k} \) and \(w_k = y_{n_k} \), to simplify notation. Then \(z_k \in E, w_k \in F \), and \(|z_k - w_k| \leq d + \frac{1}{n_k} \leq d + \frac{1}{k} \). Also, since \(z_k \to x \), the sequence \(\{z_k\} \) is bounded: \(|z_k| \leq M \) for some \(M > 0 \). Then by the triangle inequality, \(|w_k| \leq |z_k - w_k| + |w_k| \leq M + d + 1 \) for all \(k \).

The set \(F \cap [-M - d - 1, M + d + 1] \subset \mathbb{R} \) is bounded and closed. By the same argument as above, the sequence \(\{w_k\} \) has a convergent subsequence \(\{w_{k_\ell}\}_{\ell=1}^{\infty} \), with \(w_{k_\ell} \to y \) for some \(y \in F \). Since \(z_k \to x \), we also have \(z_{k_\ell} \to x \).

By the triangle inequality, we have \(|x - y| \leq |z_{k_\ell} - w_{k_\ell}| + |x - z_{k_\ell}| + |w_{k_\ell} - y| \leq d + \frac{1}{k_\ell} + |x - z_{k_\ell}| + |w_{k_\ell} - y| \). Since \(k_\ell \to \infty \), \(w_{k_\ell} \to y \) and \(z_{k_\ell} \to x \), for any \(\epsilon > 0 \) we can choose \(\ell \) large enough so that the last three terms are all less than \(\epsilon/3 \). Hence \(|x - y| \leq d + \epsilon \). Since \(\epsilon > 0 \) was arbitrary, we have \(|x - y| \leq d \). On the other hand, we also have \(|x - y| \geq d \) from the definition of \(d \). Therefore \(|x - y| = d \).

2. (3 marks) In Chapter 2 #7 (below and not to hand in) you will prove (by giving a counterexample) that the formula \(\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} \overline{E_j} \) is false—in fact you can do this with \(X = \mathbb{R} \). Give an example of a metric space with infinitely many elements in which this formula is true for any sequence of sets \(\{E_j\} \).

Let \(X = \mathbb{Z} \), with the usual metric \(d(x, y) = |x - y| \). We claim that for all \(E \subset X \), \(E = \overline{E} \). Indeed, let \(E \subset X \) and suppose that \(x \) is a limit point of \(E \). Then there is an \(y \in E \) such that \(y \neq x \) and \(|y - x| \leq 1/2 \). But this is not possible, since the distance between any two distinct points in \(X \) is at least 1.

Thus every subset of \(X \) is closed. In particular, \(\bigcup_{j=1}^{\infty} E_j = \bigcup_{j=1}^{\infty} \overline{E_j} = \bigcup_{j=1}^{\infty} \overline{E}_j \).

3. Let \(X \) be the set of all bounded sequences \(\{x_n\} \) with real entries. We define a metric \(d \) on \(X \) by saying that \(d(\{x_n\}, \{y_n\}) = \sup \{|x_n - y_n| : n \in \mathbb{N}\} \).

 (a) (6 marks) Prove that this is a metric.

 We first note that \(d \) is well defined: if \(\{x_n\}, \{y_n\} \) are bounded sequences with \(|x_n| \leq K \) and \(|y_n| \leq M \) for all \(n \in \mathbb{N} \), then \(|x_n - y_n| \leq K + M \), so the set \(\{|x_n - y_n| : n \in \mathbb{N}\} \) is bounded and has a supremum.

 - We have \(|x_n - y_n| \geq 0 \) always, hence \(d(\{x_n\}, \{y_n\}) \geq 0 \). If \(d(\{x_n\}, \{y_n\}) = 0 \), then \(|x_n - y_n| = 0 \) for all \(n \), so that \(\{x_n\} = \{y_n\} \). Also \(d(\{x_n\}, \{x_n\}) = \sup 0 = 0 \).
4. (4 marks) Prove that $\mathbb{Q} \cap [0, 2]$ is not a compact subset of \mathbb{R} by finding an open cover with no finite subcover.

Recall that $1 < \sqrt{2} < 2$ and $\sqrt{2}$ is irrational. Therefore the numbers $\sqrt{2} - 1, \sqrt{2} - \frac{1}{2}, \sqrt{2} - \frac{1}{3}, \ldots$ are all irrational and belong to $[0, \sqrt{2})$. Let

$$G_0 = (\sqrt{2}, 3), \quad G_1 = (-1, \sqrt{2} - 1), \quad G_n = \left(\sqrt{2} - \frac{1}{n-1}, \sqrt{2} - \frac{1}{n}\right) \text{ for } n \in \mathbb{N}, \ n \geq 2.$$

Then G_n are open, $\mathbb{Q} \cap [0, 2] \subset \bigcup_{n=0}^{\infty} G_n$, and this cover has no finite subcover (or, for that matter, any proper subcover).

Alternatively one could use the open cover of $\mathbb{Q} \cap [0, 2]$, $\{V_n, n \in \mathbb{N}\}$, where $V_n = (-1, \sqrt{2} - n^{-1}) \cup (\sqrt{2} + n^{-1}, 3)$.

(b) (6 marks) Let E_N be the set of all sequences $\{x_n\} \in X$ such that $x_n = 0$ for all $n \geq N$. Let $\{a_n\} \in X$. Prove that $\{a_n\}$ belongs to the closure of $\bigcup_{N \in \mathbb{N}} E_N$ if and only if $\lim_{n \to \infty} a_n = 0$.

Suppose that $\lim_{n \to \infty} a_n = 0$, and let $\epsilon > 0$. Then there is an $N \in \mathbb{N}$ such that for $n \geq N$ we have $|a_n| < \epsilon$. Let $\{b_n\}$ be the sequence defined by $b_n = a_n$ for $n < N$ and $b_n = 0$ for $n \geq N$. Then $\{b_n\} \in E_N \subset \bigcup_{N \in \mathbb{N}} E_N$ and $d(\{a_n\}, \{b_n\}) < \epsilon$. Since $\epsilon > 0$ was arbitrary, $\{a_n\}$ belongs to the closure of $\bigcup_{N \in \mathbb{N}} E_N$ as required.

Conversely, suppose that $\{a_n\}$ belongs to the closure of $\bigcup_{N \in \mathbb{N}} E_N$. We have to prove that $a_n \to 0$. Let $\epsilon > 0$, then there is a sequence $\{b_n\}$ such that $\{b_n\} \in E_N$ for some N and $d(\{a_n\}, \{b_n\}) < \epsilon$. The last condition implies that $|a_n - b_n| < \epsilon$ for all $n \in \mathbb{N}$. But since $\{b_n\} \in E_N$, we have $b_n = 0$ for $n \geq N$, so that $|a_n| < \epsilon$ for all $n \geq N$. This implies that $a_n \to 0$.

4. (4 marks) Prove that $\mathbb{Q} \cap [0, 2]$ is not a compact subset of \mathbb{R} by finding an open cover with no finite subcover.