MATH 226 SAMPLE MIDTERM 1-SOLUTIONS

Fall 2014

1. Let $f(x, y)=\sqrt{y-x^{2}}$. Find the domain of f, and draw several level curves.

The domain is $\left\{(x, y) \in \mathbb{R}^{2}: y \geq x^{2}\right\}$. The level curves $f(x, y)=c$ are parabolas $y=x^{2}+c^{2}$.
2. Decide whether each of the sets below is open, closed, or neither.
(a) $\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x<1,0 \leq y<2\right\}$ - neither
(b) $\left\{(x, y) \in \mathbb{R}^{2}: x+y<2\right\}$ - open
3. Find the area of the triangle in \mathbb{R}^{3} with vertices $(1,0,0),(4,0,1),(1,2,-1)$.

Denote the vertices $(1,0,0),(4,0,1),(1,2,-1)$ by P, Q, R. Then the area is $\frac{1}{2}\|\overrightarrow{P Q} \times \overrightarrow{P R}\|$. We have:

$$
\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 3,0,1\rangle \times\langle 0,2,-1\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
3 & 0 & 1 \\
0 & 2 & -1
\end{array}\right|=-2 \mathbf{i}+3 \mathbf{j}+6 \mathbf{k} .
$$

Hence the area is $\frac{1}{2} \sqrt{4+9+36}=\frac{1}{2} \sqrt{49}=\frac{7}{2}$.
4. Find the scalar parametric equations of the line which passes through the point $(4,5,-2)$ and is perpendicular to the plane through the three points $(1,0,1),(3,2,0),(-1,1,2)$.

The line should be parallel to the normal vector to the plane in question. Denote the three points in the plane by P, Q, R. Then the normal vector is

$$
\mathbf{n}=\overrightarrow{P Q} \times \overrightarrow{P R}=\langle 2,1,-1\rangle \times\langle-2,1,1\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & -1 \\
-2 & 1 & 1
\end{array}\right|=3 \mathbf{i}+6 \mathbf{k}
$$

Hence the vector parametric equation is $\mathbf{r}=(4+3 t) \mathbf{i}+5 \mathbf{j}+(6 t-2) \mathbf{k}$, and the scalar parametric equations are

$$
x=4+3 t, \quad y=5, z=6 t-2 .
$$

5. Let

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{3}+x y-y^{3}}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

We have $f(x, 0)=\frac{x^{3}}{x^{2}}=x$ and $f(0, y)=\frac{-y^{3}}{y^{2}}=-y$, hence $\frac{\partial f}{\partial x}(0,0)=1$ and $\frac{\partial f}{\partial y}(0,0)=-1$.
(b) Does f have a limit at $(0,0)$? Explain your answer.

From part (a), $\lim _{x \rightarrow 0} f(x, 0)=\lim _{y \rightarrow 0} f(0, y)=0$. But on the other hand, $\lim _{x \rightarrow 0} f(x, x)=$ $\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\frac{1}{2}$. Since f approaches different values as (x, y) approaches $(0,0)$ along different trajectories, the limit does not exist.
6. Find all values of (a, b) such that the tangent plane to the surface $z=4 x^{2}-y^{2}$ at $\left(a, b, 4 a^{2}-b^{2}\right)$ is parallel to the line with parametric equations $x=t+1, y=2 t, z=-4 t+9$.

Let $f(x, y)=4 x^{2}-y^{2}$, then $f_{x}(a, b)=8 a$ and $f_{y}(a, b)=-2 b$. Hence the tangent plane at $\left(a, b, 4 a^{2}-b^{2}\right)$ is perpendicular to the vector $\mathbf{n}=-8 a \mathbf{i}+2 b \mathbf{j}+\mathbf{k}$. We want \mathbf{n} to be perpendicular to the direction vector \mathbf{v} of the given line. From the equations of the line, $\mathbf{v}=\mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$. We therefore want $\mathbf{n} \cdot \mathbf{v}=0$, so that $-8 a+4 b-4=0$, or simplifying, $-2 a+b=1$. All values (a, b) with $b=1+2 a$ satisfy this condition.

