MATH 226 SAMPLE MIDTERM 1-SOLUTIONS Fall 2014

- 1. Let $f(x,y) = \sqrt{y-x^2}$. Find the domain of f, and draw several level curves. The domain is $\{(x,y) \in \mathbb{R}^2 : y \ge x^2\}$. The level curves f(x,y) = c are parabolas $y = x^2 + c^2$.
- 2. Decide whether each of the sets below is open, closed, or neither.
 - (a) $\{(x, y) \in \mathbb{R}^2 : 0 \le x < 1, 0 \le y < 2\}$ neither
 - (b) $\{(x, y) \in \mathbb{R}^2 : x + y < 2\}$ open
- 3. Find the area of the triangle in \mathbb{R}^3 with vertices (1,0,0), (4,0,1), (1,2,-1).

Denote the vertices (1,0,0), (4,0,1), (1,2,-1) by P,Q,R. Then the area is $\frac{1}{2} \| \vec{PQ} \times \vec{PR} \|$. We have:

$$\vec{PQ} \times \vec{PR} = \langle 3, 0, 1 \rangle \times \langle 0, 2, -1 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 0 & 1 \\ 0 & 2 & -1 \end{vmatrix} = -2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}.$$

Hence the area is $\frac{1}{2}\sqrt{4+9+36} = \frac{1}{2}\sqrt{49} = \frac{7}{2}$.

4. Find the scalar parametric equations of the line which passes through the point (4, 5, -2) and is perpendicular to the plane through the three points (1, 0, 1), (3, 2, 0), (-1, 1, 2).

The line should be parallel to the normal vector to the plane in question. Denote the three points in the plane by P, Q, R. Then the normal vector is

$$\mathbf{n} = \vec{PQ} \times \vec{PR} = \langle 2, 1, -1 \rangle \times \langle -2, 1, 1 \rangle = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -1 \\ -2 & 1 & 1 \end{vmatrix} = 3\mathbf{i} + 6\mathbf{k}$$

Hence the vector parametric equation is $\mathbf{r} = (4+3t)\mathbf{i} + 5\mathbf{j} + (6t-2)\mathbf{k}$, and the scalar parametric equations are

$$x = 4 + 3t, y = 5, z = 6t - 2.$$

5. Let

$$f(x,y) = \begin{cases} \frac{x^3 + xy - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

(a) Find $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

We have $f(x,0) = \frac{x^3}{x^2} = x$ and $f(0,y) = \frac{-y^3}{y^2} = -y$, hence $\frac{\partial f}{\partial x}(0,0) = 1$ and $\frac{\partial f}{\partial y}(0,0) = -1$.

(b) Does f have a limit at (0,0)? Explain your answer.

From part (a), $\lim_{x\to 0} f(x,0) = \lim_{y\to 0} f(0,y) = 0$. But on the other hand, $\lim_{x\to 0} f(x,x) = \lim_{x\to 0} \frac{x^2}{2x^2} = \frac{1}{2}$. Since f approaches different values as (x,y) approaches (0,0) along different trajectories, the limit does not exist.

6. Find all values of (a, b) such that the tangent plane to the surface $z = 4x^2 - y^2$ at $(a, b, 4a^2 - b^2)$ is parallel to the line with parametric equations x = t + 1, y = 2t, z = -4t + 9.

Let $f(x, y) = 4x^2 - y^2$, then $f_x(a, b) = 8a$ and $f_y(a, b) = -2b$. Hence the tangent plane at $(a, b, 4a^2 - b^2)$ is perpendicular to the vector $\mathbf{n} = -8a\mathbf{i} + 2b\mathbf{j} + \mathbf{k}$. We want \mathbf{n} to be perpendicular to the direction vector \mathbf{v} of the given line. From the equations of the line, $\mathbf{v} = \mathbf{i} + 2\mathbf{j} - 4\mathbf{k}$. We therefore want $\mathbf{n} \cdot \mathbf{v} = 0$, so that -8a + 4b - 4 = 0, or simplifying, -2a + b = 1. All values (a, b) with b = 1 + 2a satisfy this condition.