This midterm has 4 questions on 5 pages, for a total of 40 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (Last, First, All middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	Total
Points:	8	10	12	10	40
Score:					

1. The tangent plane to the graph of $z=f(x, y)$ at $(x, y)=(3,4)$ has the equation $x-6 y-$ $2 z=1$.
(a) Find the directional derivative $D_{\mathbf{u}} f(3,4)$ if $\mathbf{u}=\frac{\sqrt{3}}{2} \mathbf{i}-\frac{1}{2} \mathbf{j}$.

Solution: (3 marks for finding $\nabla f(3,4), 2$ marks for $D_{\mathbf{u}} f(3,4)$)
From the equation of the tangent plane, we have $\nabla f(3,4)=\langle 1 / 2,-3\rangle$ so that

$$
D_{\mathbf{u}} f(3,4)=\frac{1}{2} \cdot \frac{\sqrt{3}}{2}-3\left(-\frac{1}{2}\right)=\frac{\sqrt{3}}{4}+\frac{3}{2} .
$$

(b) Is there a unit vector \mathbf{v} such that $D_{\mathbf{v}} f(3,4)=4$? If yes, find it. If no, explain why.

Solution: (3 marks)
The largest possible value of $D_{\mathbf{v}} f(3,4)$ is $|\nabla f(3,4)|=\sqrt{(1 / 2)^{2}+3^{2}}=\sqrt{9.25}$. This is less than 4 (since $9.25<16$). Hence there is no such \mathbf{v}.
2. The equations

$$
\begin{aligned}
u & =x^{3}-y^{2} \\
v & =2 x y^{3}
\end{aligned}
$$

define x, y implicitly as functions of u, v near $x=-1, y=1$.
(a) Find $\frac{\partial x}{\partial u}$ and $\frac{\partial y}{\partial u}$ near $x=-1, y=1$.

Solution: (6 marks: 3 for setting up the equations, 3 for solving them. Plugging in $(x, y)=(-1,1)$ is optional.)
Differentiating the two equations with respect to u, we get

$$
\begin{aligned}
& 1=3 x^{2} \frac{\partial x}{\partial u}-2 y \frac{\partial y}{\partial u} \\
& 0=2 y^{3} \frac{\partial x}{\partial u}+6 x y^{2} \frac{\partial y}{\partial u}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \frac{\partial x}{\partial u}=\frac{\left|\begin{array}{cc}
1 & -2 y \\
0 & 6 x y^{2}
\end{array}\right|}{\left|\begin{array}{ll}
3 x^{2} & -2 y \\
2 y^{3} & 6 x y^{2}
\end{array}\right|}=\frac{6 x y^{2}}{18 x^{3} y^{2}+4 y^{4}}=\frac{3 x}{9 x^{3}+2 y^{2}} \\
& \frac{\partial y}{\partial u}=\frac{\left|\begin{array}{cc}
3 x^{2} & 1 \\
2 y^{3} & 0
\end{array}\right|}{\left|\begin{array}{ll}
3 x^{2} & -2 y \\
2 y^{3} & 6 x y^{2}
\end{array}\right|}=\frac{-2 y^{3}}{18 x^{3} y^{2}+4 y^{4}}=\frac{-y}{9 x^{3}+2 y^{2}}
\end{aligned}
$$

Thus at $(x, y)=(-1,1)$, we have

$$
\frac{\partial x}{\partial u}=\frac{-3}{-9+2}=\frac{3}{7}, \quad \frac{\partial y}{\partial u}=\frac{-1}{-9+2}=\frac{1}{7} .
$$

(b) If $z=\cos \left(3 x-y^{2}\right)$, find $\frac{\partial z}{\partial u}$ near $x=-1, y=1$.

Solution: (4 marks. Plugging in $(-1,1)$ or simplifying is not necessary for full credit.)
We have

$$
\begin{gathered}
\frac{\partial z}{\partial u}=-3 \sin \left(3 x-y^{2}\right) \frac{\partial x}{\partial u}+2 y \sin \left(3 x-y^{2}\right) \frac{\partial y}{\partial u} \\
=-3 \sin \left(3 x-y^{2}\right) \frac{3 x}{9 x^{3}+2 y^{2}}+2 y \sin \left(3 x-y^{2}\right)=\frac{-y}{9 x^{3}+2 y^{2}}
\end{gathered}
$$

so that at $(x, y)=(-1,1)$,

$$
\frac{\partial z}{\partial u}=-3 \sin (-4) \cdot \frac{3}{7}+2 \sin (-4) \cdot \frac{1}{7}=\sin (4)
$$

3. Let $F(x, y)=x f(x+y)+y g(x+y)$, where f, g are real-valued functions of one variable whose all derivatives are continuous.
(a) Prove that $F(x, y)$ satisfies the equation $F_{x x}(x, y)-2 F_{x y}(x, y)+F_{y y}(x, y)=0$ for all x, y.
(b) Find the second order Taylor polynomial of F at the point $(0,0)$ in terms of the derivatives of f, g at 0 .

Solution:

(a) (6 marks: 1 for each derivative below, 1 for checking the equation)

$$
\begin{gathered}
F_{x}(x, y)=f(x+y)+x f^{\prime}(x+y)+y g^{\prime}(x+y) \\
F_{y}(x, y)=x f^{\prime}(x+y)+g(x+y)+y g^{\prime}(x+y) \\
F_{x x}(x, y)=x f^{\prime \prime}(x+y)+2 f^{\prime}(x+y)+y g^{\prime \prime}(x+y) \\
F_{x y}(x, y)=f^{\prime}(x+y)+x f^{\prime \prime}(x+y)+g^{\prime}(x+y)+y g^{\prime \prime}(x+y) \\
F_{y y}(x, y)=x f^{\prime \prime}(x+y)+2 g^{\prime}(x+y)+y g^{\prime \prime}(x+y)
\end{gathered}
$$

so that, with all derivatives evaluated at $x+y$,
$F_{x x}-2 F_{x y}+F_{y y}=\left(x f^{\prime \prime}+2 f^{\prime}+y g^{\prime \prime}\right)+\left(x f^{\prime \prime}+2 g^{\prime}+y g^{\prime \prime}\right)-2\left(f^{\prime}+x f^{\prime \prime}+g^{\prime}+y g^{\prime \prime}\right)=0$.
(b) (6 marks: 2 for the derivatives, 4 for using the correct formula for the Taylor polynomial)
At $(0,0)$, we have $F(0,0)=0$ and

$$
\begin{gathered}
F_{x}(0,0)=f(0), \quad F_{y}(0,0)=g(0) \\
F_{x x}(0,0)=2 f^{\prime}(0), \quad F_{x y}(0,0)=f^{\prime}(0)+g^{\prime}(0), \quad F_{y y}(0,0)=2 g^{\prime}(0)
\end{gathered}
$$

Thus

$$
p_{2}(x, y)=f(0) x+g(0) y+f^{\prime}(0) x^{2}+\left(f^{\prime}(0)+g^{\prime}(0)\right) x y+g^{\prime}(0) y^{2}
$$

4. Find all critical points of the function $f(x, y)=e^{-y}\left(x^{2}-y^{2}\right)$ and classify them as local minima, maxima, or saddle points.

Solution: (3 marks for finding both critical points, 3 for finding the second derivatives, 2 for testing each point)

We have $f_{x}=2 x e^{-y}$ and $f_{y}=-e^{-y}\left(x^{2}-y^{2}\right)-2 y e^{-y}$, For a critical point, we must have $f_{x}=0$, so that $x=0$. We also must have $f_{y}=0$, so that $e^{-y}\left(y^{2}-2 y\right)=0$, $y=0$ or $y=2$. Thus there are two critical points $(0,0)$ and $(0,2)$.

Next, we have

$$
\begin{gathered}
f_{x x}=2 e^{-y} \\
f_{x y}=-2 x e^{-y} \\
f_{y y}=e^{-y}\left(x^{2}-y^{2}\right)+2 y e^{-y}+2 y e^{-y}-2 e^{-y}=e^{-y}\left(x^{2}-y^{2}+4 y-2\right)
\end{gathered}
$$

- At $(0,0), f_{x x}=2>0$, and

$$
\operatorname{det}(H)=\left|\begin{array}{cc}
2 & 0 \\
0 & -2
\end{array}\right|=-4<0
$$

so that at this point we have a saddle point.

- At $(0,2), f_{x x}=2 e^{-2}>0$, and

$$
\operatorname{det}(H)=\left|\begin{array}{cc}
2 e^{-2} & 0 \\
0 & 2 e^{-2}
\end{array}\right|=4 e^{-4}>0
$$

so that here we have a local minimum.

