This midterm has 5 questions on 5 pages, for a total of 40 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (Last, First, All middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	5	Total
Points:	10	6	6	8	10	40
Score:						

10 marks 1. (a) Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Find the general formula for $D_{\mathbf{u}} f(0,0)$, where $\mathbf{u}=\left(u_{1}, u_{2}\right)$ is a unit vector, in terms of u_{1}, u_{2}.
(b) Is there a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $D_{\mathbf{u}} f(0,0)=u_{1}^{2}-u_{2}^{2}$ for every unit vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$? If yes, find it. If no, explain why.

6 marks
2. Let $w=f\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z\right)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$
c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=0
$$

for any vector $\left(c_{1}, c_{2}, c_{3}\right)$ orthogonal to both $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$.

6 marks 3. Assume that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{1} function and that the point $(1,2,-3)$ lies on the surface $f(2 x-y+z, x-z)=10$. What condition should f satisfy so that the equation $f(2 x-y+z, x-z)=10$ could be solved for z as a differentiable function of x and y near the point $(1,2,-3)$? (Use the Implicit Function Theorem.)

8 marks 4. Find the second order Taylor polynomial of the function $f(x, y)=\sin \left(x+y^{2}\right)$ at $(\pi, 0)$.

10 marks 5. Find the largest and smallest values of the function $f(x, y)=4 x-2 x y+y^{2}$ on the square $\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 2\}$.

