This midterm has 5 questions on 5 pages, for a total of 40 points.

Duration: 50 minutes

- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (Last, First, All middle names): \qquad

Student-No: \qquad

Signature: \qquad

Question:	1	2	3	4	5	Total
Points:	10	6	6	8	10	40
Score:						

1. (a) Let

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x^{5}}{x^{4}+y^{4}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

Find the general formula for $D_{\mathbf{u}} f(0,0)$, where $\mathbf{u}=\left(u_{1}, u_{2}\right)$ is a unit vector, in terms of u_{1}, u_{2}.

Solution:

$$
D_{\mathbf{u}} f(0,0)=\lim _{t \rightarrow 0} \frac{1}{t}(f(t \mathbf{u})-f(0,0))=\frac{1}{t}\left(\frac{t^{5} u_{1}^{5}}{t^{4} u_{1}^{4}+t^{4} u_{2}^{4}}-0\right)=\frac{1}{t} \frac{t u_{1}^{5}}{u_{1}^{4}+u_{2}^{4}}=\frac{u_{1}^{5}}{u_{1}^{4}+u_{2}^{4}} .
$$

(b) Is there a differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $D_{\mathbf{u}} f(0,0)=u_{1}^{2}-u_{2}^{2}$ for every unit vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$? If yes, find it. If no, explain why.

Solution:

If there were such a function, we would have $f_{x}(0,0)=D_{\mathbf{i}} f(0,0)=1^{2}-0^{2}=1$ and $f_{y}(0,0)=D_{\mathbf{j}} f(0,0)=0^{2}-1^{2}=-1$, hence $\nabla f(0,0)=(1,-1)$. We would also have $D_{\mathbf{u}} f(0,0)=\nabla f(0,0) \cdot \mathbf{u}=u_{1}-u_{2}$ for all \mathbf{u}. But this is not consistent with $D_{\mathbf{u}} f(0,0)=u_{1}^{2}-u_{2}^{2}$: for example when $\mathbf{u}=-\mathbf{i}$, the first formula gives $D_{-\mathbf{i}} f(0,0)=-1-0=-1$ and the second one gives $D_{-\mathbf{i}} f(0,0)=1^{2}-0^{2}=1$. there is no such function.

6 marks 2. Let $w=f\left(a_{1} x+a_{2} y+a_{3} z, b_{1} x+b_{2} y+b_{3} z\right)$, where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ has continuous first order partial derivatives. Prove that

$$
c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=0
$$

for any vector $\left(c_{1}, c_{2}, c_{3}\right)$ orthogonal to both $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$.

Solution:

We have $w=f(u, v)$, where $u=a_{1} x+a_{2} y+a_{3} z$ and $v=b_{1} x+b_{2} y+b_{3} z$. By the Chain Rule,

$$
\begin{aligned}
& c_{1} \frac{\partial w}{\partial x}+c_{2} \frac{\partial w}{\partial y}+c_{3} \frac{\partial w}{\partial z}=c_{1}\left(f_{u} a_{1}+f_{v} b_{1}\right)+c_{2}\left(f_{u} a_{2}+f_{v} b_{2}\right)+c_{3}\left(f_{u} a_{3}+f_{v} b_{3}\right) \\
& =\left(c_{1} a_{1}+c_{2} a_{2}+c_{3} a_{3}\right) f_{u}+\left(c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3}\right) f_{v}=(\mathbf{c} \cdot \mathbf{a}) f_{u}+(\mathbf{c} \cdot \mathbf{b}) f_{v}=0
\end{aligned}
$$

3. Assume that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{1} function and that the point $(1,2,-3)$ lies on the surface $f(2 x-y+z, x-z)=10$. What condition should f satisfy so that the equation $f(2 x-y+z, x-z)=10$ could be solved for z as a differentiable function of x and y near the point $(1,2,-3)$? (Use the Implicit Function Theorem.)

Solution: By the Implicit Function Theorem, we can solve for z as required if $\partial_{z} f(2 x-y+z, x-z) \neq 0$ at $(1,2,-3)$. As in (a), we have $\partial_{z} f(2 x-y+z, x-z)=f_{u}-f_{v}$. Also, at $(1,2,-3)$ we have $u=2-2-3=-3$ and $v=1+3=4$. Hence the needed condition is $f_{u}(-3,4)-f_{v}(-3,4) \neq 0$.
4. Find the second order Taylor polynomial of the function $f(x, y)=\sin \left(x+y^{2}\right)$ at $(\pi, 0)$.

Solution:

$$
\begin{gathered}
f(\pi, 0)=\sin \pi=0, \\
f_{x}(x, y)=\cos \left(x+y^{2}\right), f_{x}(\pi, 0)=\cos \pi=-1, \\
f_{y}(x, y)=2 y \cos \left(x+y^{2}\right), f_{x}(\pi, 0)=0, \\
f_{x x}(x, y)=-\sin \left(x+y^{2}\right), f_{x x}(\pi, 0)=-\sin \pi=0, \\
f_{x y}(x, y)=-2 y \sin \left(x+y^{2}\right), f_{x y}(\pi, 0)=0, \\
f_{y y}(x, y)=-4 y^{2} \sin \left(x+y^{2}\right)+2 \cos \left(x+y^{2}\right), f_{y y}(\pi, 0)=2 \cos \pi=-2, \\
p_{2}(x, y)=-(x-\pi)-y^{2} .
\end{gathered}
$$

5. Find the largest and smallest values of the function $f(x, y)=4 x-2 x y+y^{2}$ on the square $\{(x, y): 0 \leq x \leq 2,0 \leq y \leq 2\}$.

Solution: We first look for critical points inside the region. We have $f_{x}=4-2 y$ and $f_{y}=-2 x+2 y$, hence if $f_{x}=f_{y}=0$, then $y=2$ and $x=2$. At the critical point, $f(2,2)=8-8+4=4$.

Next, we look for possible minima and maxima on the boundary:

- $f(x, 0)=4 x$, minimum value on $[0,2]$ is $f(0,0)=0$, maximum value is $f(2,0)=$ 8;
- $f(x, 2)=4 x-4 x+4=4$;
- $f(0, y)=y^{2}$, minimum value on $[0,2]$ is $f(0,0)=0$, maximum value is $f(0,2)=$ 4;
- $f(2, y)=8-4 y+y^{2}$. To find its extrema on $[0,2]$, we look for critical points: $-4+2 y=0, y=2$. We have already evaluated $f(2,2)=4$ and $f(2,0)=8$.

Thus the smallest value is $f(0,0)=0$ and the largest value is $f(2,0)=8$.

