- Read all the questions carefully before starting to work.
- Give complete arguments and explanations for all your calculations; answers without justifications will not be marked.
- Continue on the back of the previous page if you run out of space.
- Attempt to answer all questions for partial credit.
- This is a closed-book examination. None of the following are allowed: documents, cheat sheets or electronic devices of any kind (including calculators, cell phones, etc.)

Full Name (Last, First): \qquad

Student Number: \qquad

Signature: \qquad

Question:	1	2	3	4	5	Total
Points:	12	8	12	16	12	60
Score:						

12 marks 1. (a) (4 marks) Give an example of a set A such that $|A|=3$ and $\mathcal{P}(A) \cap A \neq \emptyset$.
Solution: $A=\{1,2,\{1\}\}$.
(b) (4 marks) State the converse and the contrapositive of the following statement:

If $A \subseteq B$ then $A \cap C \subseteq B \cap C$.

Solution:

- Converse: If $A \cap C \subseteq B \cap C$ then $A \subseteq B$.
- Contrapositive: If $A \cap C \nsubseteq B \cap C$ then $A \nsubseteq B$.
(c) (4 marks) State the negation of the following statement:

$$
\forall x \in A \exists y \in B \forall z \in C \quad x<z \Rightarrow y<x
$$

Solution:

$$
\exists x \in A \forall y \in B \exists z \in C \quad x<z \wedge y \geq x
$$

2. Let P, Q, R be statements. Show that

$$
[\sim(P \Rightarrow Q) \vee \sim(P \Rightarrow R)] \equiv \sim(P \Rightarrow(Q \wedge R))
$$

Solution:

$$
\begin{aligned}
{[\sim(P \Rightarrow Q) \vee \sim(P \Rightarrow R)] } & \equiv \sim[(P \Rightarrow Q) \wedge(P \Rightarrow R)] \\
& \equiv \sim[(\sim P \vee Q) \wedge(\sim P \vee R)] \\
& \equiv \sim[\sim P \vee(Q \wedge R)] \\
& \equiv \sim[P \Rightarrow(Q \vee R)]
\end{aligned}
$$

A proof by truth table would also work.

12 marks 3. Prove the following statement: for all $n \in \mathbb{Z}$, the number $n^{3}-4 n$ is divisible by 3 .

Solution:

Proof by cases: $n \equiv 0,1,2(\bmod 3)$.

- If $n \equiv 0(\bmod 3)$, then $n=3 k$ for some $k \in \mathbb{Z}$. Then

$$
n^{3}-4 n=(3 k)^{3}-4(3 k)=27 k^{3}-12 k=3\left(9 k^{3}-4 k\right) .
$$

Since $9 k^{3}-k \in \mathbb{Z}, n^{3}-4 n$ is divisible by 3 .

- If $n \equiv 1(\bmod 3)$, then $n=3 k+1$ for some $k \in \mathbb{Z}$. Then

$$
\begin{aligned}
n^{3}-4 n & =(3 k+1)^{3}-4(3 k+1)=27 k^{3}+27 k^{2}+9 k+1-12 k-4 \\
& =27 k^{3}+27 k^{2}-3 k-3=3\left(9 k^{3}+9 k^{2}-k-1\right)
\end{aligned}
$$

Since $9 k^{3}+9 k^{2}-k-1 \in \mathbb{Z}, n^{3}-4 n$ is divisible by 3 .

- If $n \equiv 2(\bmod 3)$, then $n=3 k+2$ for some $k \in \mathbb{Z}$. Then

$$
\begin{gathered}
n^{3}-4 n=(3 k+2)^{3}-4(3 k+2)=27 k^{3}+54 k^{2}+36 k+8-12 k-8 \\
=27 k^{3}+54 k^{2}+24 k=3\left(9 k^{3}+18 k^{2}+8 k\right) .
\end{gathered}
$$

Since $9 k^{3}+18 k^{2}+8 k \in \mathbb{Z}, n^{3}-4 n$ is divisible by 3 .
It is also possible to expand $n^{3}-4 n=n\left(n^{2}-4\right)=n(n-2)(n+2)$ and then work by cases. In that solution, the calculations are a little bit easier.

16 marks 4. Determine whether each of the following statement is True or False. Justify your answer.
(a) (4 marks) Let $A=\{\emptyset\}$. For every set $B, A \times B=\emptyset$.

Solution: False. Take $B=\{1\}$. Then $A \times B=\{(\emptyset, 1)\}$.
(b) (4 marks) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, \exists z \in \mathbb{R}$ s.t. $y z=x$.

Solution: False. Take $x=1, y=0$. Then $\forall z \in \mathbb{R}, y z=0 \neq 1=x$.
(c) (4 marks) Let $n \in \mathbb{Z}$ and $a, b \in \mathbb{N}$. If $a \mid n$ and $b \mid n$ then $(a b) \mid n$.

Solution: False. Take $n=4, a=4, b=2$. We have $4|4,2| 4,(4 \times 2) \nmid 4$.
(d) (4 marks) $\forall x, y \in \mathbb{R}$, if $x \neq y$ then $x^{2}+y^{2}>0$.

Solution: True. If $x \neq y$, then x, y cannot be both 0 . Say $x \neq 0$, then $x^{2}>0$. Since $y^{2} \geq 0$. Then $x^{2}+y^{2}>0$.

12 marks 5. Let A and B be sets. Show that $(A \cup B)-B=A$ if and only if $A \cap B=\emptyset$.

Solution: Assume $(A \cup B)-B=A$. If $x \in A \cap B$, then $x \in A, x \in B$. Since $x \in A=(A \cup B)-B, x \notin B$. So no such x can exist. Thus, $A \cap B=\emptyset$.
Assume $A \cap B=\emptyset$.
If $x \in(A \cup B)-B$, then $x \in A \cup B$, so $x \in A$ or $x \in B$. Then, $x \notin B$ implies $x \in A$. Hence, $(A \cup B)-B \subseteq A$.
If $x \in A$, then $x \notin B$ because $A \cap B=\emptyset . \quad x \in A$ also implies $x \in A \cup B$. So, $x \in(A \cup B)-B$. Hence $A \subseteq(A \cup B)-B$. We now conclude $(A \cup B)-B=A$.

