MATH 120 MIDTERM 1 INFORMATION

The midterm will cover Sections 1.1-1.5 and 2.1-2.4 of the textbook. There will be 4-5 problems whose level of difficulty will be comparable to that of the practice problems below. You will not be allowed to use books, notes, or calculators.

Please read Sections 2.1-2.4 of the textbook before the midterm (you may skip the proof of the Chain Rule in Section 2.4). There will be no homework on Sections 2.1 - 2.4 before the test. Accordingly, the midterm questions on that part of the material will be less challenging. Recommended practice problems are: Section 2.1, 1-24; Section 2.2, 1-49; Section 2.3, 1-50; Section 2.4, 1-16 and 22-32.

PRACTICE PROBLEMS

1. Evaluate the following limits if they exist; if they do not exist, explain why.
(a)

$$
\lim _{x \rightarrow \infty} \frac{x^{2}-\cos (2 x)}{x-x^{2}+\sqrt{x}}
$$

(b)

$$
\lim _{x \rightarrow 3} \frac{\left|x^{2}-4 x+3\right|}{x^{2}-9}
$$

2. (a) Find $\frac{d}{d x}\left(\frac{2 x+1}{\sqrt{x^{2}+1}}\right)$.
(b) If $f(x)$ is is a function differentiable at $x=0$ and if $g(x)=f\left(x^{3}\right)$, what is $g^{\prime}(0)$?
3. Find all values of k such that the line $y=4 x-6$ is tangent to the graph of the function $y=k x^{2}$.
4. We know that $f(x)$ is a continuous function on $[0,1]$ such that $f(0)>0$ and $f(1)<1$. Prove that there is a c in $(0,1)$ such that $f(c)=c$. (Hint: apply the Intermediate Value Theorem to the function $g(x)=f(x)-x$.)
