MATH 120 MIDTERM 2 - SOLUTIONS

1. If $x^{4}+y^{4}+4 x y=16$, find y^{\prime} and $y^{\prime \prime}$ at the point where $x=0, y=2$.

Differentiate the equation: $4 x^{3}+4 y^{3} y^{\prime}+4 x y^{\prime}+4 y=0$, hence

$$
\begin{equation*}
x^{3}+y^{3} y^{\prime}+x y^{\prime}+y=0 \tag{1}
\end{equation*}
$$

At $(0,2)$ we have $0+8 y^{\prime}+0+2=0$, hence $y^{\prime}=-1 / 4$. To find $y^{\prime \prime}$, we differentiate (1) again:

$$
3 x^{2}+3 y^{2}\left(y^{\prime}\right)^{2}+y^{3} y^{\prime \prime}+y^{\prime}+x y^{\prime \prime}+y^{\prime}=0
$$

and plug in $x=0, y=2, y^{\prime}=-1 / 4$:

$$
0+3 \cdot 4 \cdot\left(-\frac{1}{4}\right)^{2}+8 y^{\prime \prime}-\frac{1}{4}+0-\frac{1}{4}=0,8 y^{\prime \prime}=\frac{1}{2}-\frac{3}{4}=-\frac{1}{4}, y^{\prime \prime}=-\frac{1}{32}
$$

2. Is there a function $f(x)$, defined and differentiable for all $x \neq 0$, such that $f^{\prime}(x)=x^{-2}, f(2)=3$ and $f(-1)=4$? If yes, find such a function. If not, explain why.
On each of the intervals $(-\infty, 0)$ and $(0, \infty)$ we have $f(x)=\int x^{-2} d x=-x^{-1}+C$. If $f(x)=$ $-x^{-1}+C_{1}$ on $(-\infty, 0)$, then $4=f(-1)=1+C_{1}, C_{1}=3$. Similarly, if $f(x)=-x^{-1}+C_{2}$ on $(0, \infty)$, then $3=f(2)=-1 / 2+C_{2}, C_{2}=7 / 2$. Thus if

$$
f(x)= \begin{cases}-x^{-1}+3, & x<0 \\ -x^{-1}+7 / 2, & x>0\end{cases}
$$

then $f^{\prime}(x)=x^{-2}$ for all $x \neq 0$. (A very similar example, also involving $\int x^{-2} d x$, was discussed in class a few weeks ago.)
3. Let $f(x)=\frac{1}{e^{x}+2 e^{-x}}$ (defined for all x). Does $f(x)$ have an absolute maximum and an absolute minimum? If yes, find the points where the absolute maximum or minimum is attained, and find the value of $f(x)$ at those points. If not, explain why.
We have $f^{\prime}(x)=-\frac{e^{x}-2 e^{-x}}{\left(e^{x}+2 e^{-x}\right)^{2}}$. Thus $f^{\prime}(x)=0$ if $e^{x}=2 e^{-x}, e^{2 x}=2, x=\frac{1}{2} \ln 2$. Moreover, $f^{\prime}(x)$ is positive when $x<\frac{1}{2} \ln 2$ and negative when $x>\frac{1}{2} \ln 2$. Thus $f(x)$ is increasing on $\left(-\infty, \frac{1}{2} \ln 2\right)$ and decreasing on $\left(\frac{1}{2} \ln 2, \infty\right)$. Also, $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$. Therefore $f(x)$ has an absolute maximum

$$
f\left(\frac{1}{2} \ln 2\right)=\frac{1}{\sqrt{2}+2 / \sqrt{2}}=\frac{1}{2 \sqrt{2}}
$$

and no absolute minimum.
4. A bacterial culture has been growing exponentially in t since 12 noon. Between 1 pm and 2 pm the number of cells increased from 3000 to 4500. How many cells were originally present at 12 noon?

Let $y(t)$ denote the number of cells present at time t, with $t=0$ at 12 noon. Then $y(t)=C e^{k t}$ for some C and k. We know that $y(1)=C e^{k}=3000$ and $y(2)=C e^{2 k}=4500$. Hence $e^{k}=$ $4500 / 3000=1.5$. It follows that $3000=C e^{k}=1.5 C, C=2000$. Thus $y(0)=C=2000$.
5. A water tank has the shape of an inverted circular cone with base radius 3 m and height 6 m . Water is being pumped into the tank at a constant rate of $x m^{3}$ per minute. At the time when the water is 2 m deep, the water level is rising at the rate of $1 \mathrm{~m} / \mathrm{min}$. What is x ? (The volume of a cone with base radius r and height h is $V=\pi r^{2} h / 3$.)
Let $h(t)$ denote the level of water in the tank, measured from the tip up. Then $\frac{r}{h}=\frac{3}{6}=\frac{1}{2}$, and the volume of the water in the tank is $V=\frac{\pi r^{2} h}{3}=\frac{\pi h^{3}}{12}$. Differentiate this:

$$
x=V^{\prime}=\frac{\pi \cdot 3 h^{2} \cdot h^{\prime}}{12}=\frac{12 \pi}{12}=\pi .
$$

6. Let f be a function such that $f, f^{\prime}, f^{\prime \prime}$ exist and are continuous for all $x, f(0)=0, f^{\prime}(0)=2$, $f^{\prime \prime}(0)=3, f(4)=6$. Prove that $f(x)$ has at least one inflection point in $[0,4]$.
Suppose that $f^{\prime \prime}(x)$ is never 0 on [0,4]; since it is continuous, it must have constant sign (always positive or always negative). Since $f^{\prime \prime}(0)=3>0, f^{\prime \prime}(x)>0$ on $[0,4]$. Therefore f^{\prime} is increasing on $[0,4]$, and in particular $f^{\prime}(x) \geq f^{\prime}(0)=2$ on $[0,4]$. But on the other hand, by the mean value theorem there must be a point c in $(0,4)$ such that

$$
f^{\prime}(c)=\frac{f(4)-f(0)}{4-0}=\frac{6-0}{4}=\frac{3}{2}<2 .
$$

This is a contradiction.

