MATH 120 MIDTERM 1 - SOLUTIONS

1. Evaluate the following limits if they exist; if they do not exist, explain why.
(a)

$$
\begin{gathered}
\lim _{x \rightarrow 2} \frac{x^{2}-3 x+2}{x^{2}-5 x+6}=\lim _{x \rightarrow 2} \frac{(x-1)(x-2)}{(x-2)(x-3)} \\
=\lim _{x \rightarrow 2} \frac{x-1}{x-3}=\frac{2-1}{2-3}=-1 .
\end{gathered}
$$

(b)

$$
\begin{gathered}
\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+1}-\sqrt{x+1}}{x-1} \\
=\lim _{x \rightarrow 1} \frac{\left(\sqrt{x^{2}+1}-\sqrt{x+1}\right)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)} \\
=\lim _{x \rightarrow 1} \frac{\left(x^{2}+1\right)-(x+1)}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)} \\
=\lim _{x \rightarrow 1} \frac{x^{2}-x}{(x-1)\left(\sqrt{x^{2}+1}+\sqrt{x+1}\right)} \\
=\lim _{x \rightarrow 1} \frac{x}{\sqrt{x^{2}+1}+\sqrt{x+1}}=\frac{1}{\sqrt{2}+\sqrt{2}}=\frac{1}{2 \sqrt{2}} .
\end{gathered}
$$

2. The function $f(x)$ is defined on the interval $[0,2]$ and is between $4-x$ and $x^{2}+2$ for all x in this interval. Does it have to be continuous at $x=1$? Explain why or why not.

Let $g(x)=4-x$ and $h(x)=x^{2}+2$. Then $g(1)=h(1)=3$, hence $f(1)=3$ as well. Also, g and h are continuous everywhere, and in particular $\lim _{x \rightarrow 1} g(x)=\lim _{x \rightarrow 1} h(x)=3$. By the squeeze theorem, $\lim _{x \rightarrow 1} f(x)=3=f(1)$, so that $f(x)$ is continuous at $x=1$.
3. We know that $f(x)$ is a differentiable function such that $f(0)=-3$ and $f^{\prime}(0)=2$. What is $\left.\frac{d}{d x} f^{2}(2 f(x)+6)\right|_{x=0}$?

We have

$$
\begin{gathered}
\frac{d}{d x} f^{2}(2 f(x)+6)=2 f(2 f(x)+6) \cdot \frac{d}{d x} f(2 f(x)+6) \\
=2 f(2 f(x)+6) \cdot f^{\prime}(2 f(x)+6) \cdot 2 f^{\prime}(x)
\end{gathered}
$$

Plugging in $x=0$, we get

$$
2 f(0) \cdot f^{\prime}(0) \cdot 2 f^{\prime}(0)=2 \cdot(-3) \cdot 2 \cdot 2 \cdot 2=-48 .
$$

4. Find the equation of the line tangent to the curve $y=\sqrt{x^{2}-4 x-1}$ at the point $(-1,2)$.

We have

$$
y^{\prime}=\frac{1}{2 \sqrt{x^{2}-4 x-1}} \cdot(2 x-4)=\frac{x-2}{\sqrt{x^{2}-4 x-1}} .
$$

At $x=-1, y^{\prime}=\frac{-1-2}{\sqrt{1+4-1}}=\frac{-3}{\sqrt{4}}=-\frac{3}{2}$. Therefore the equation of the tangent line is

$$
y-2=-\frac{3}{2}(x+1), \text { or } y=-\frac{3}{2} x+\frac{1}{2} .
$$

5. Prove that the equation $x^{7}-3 x-1=0$ has at least one solution in the interval $-1 \leq x \leq 1$.

Let $f(x)=x^{7}-3 x-1$, then $f(-1)=-1+3-1=1>0$ and $f(1)=1-3-1=-3<0$. Since f is continuous, by the Intermediate Value Theorem there is at least one x in $[-1,1]$ where $f(x)=0$.

