A TRICKY INTEGRAL

For every $0<a<b$, a decreasing function $f:[0,1] \rightarrow[0,1]$ can be defined by $f(0)=1, f(1)=0$ and $f^{a}-f^{b}=x^{a}-x^{b}$ in between. In the simplest case $f^{2}-f=x^{2}-x$, we have $f(x)=1-x$. The following result appeared with a six pages long proof using series of gamma functions. We suggest an elementary derivation.
Theorem (Holroyd, Liggett and Romik, 2005)

$$
\int_{0}^{1} \frac{-\log f(x)}{x} d x=\frac{\pi^{2}}{3 a b}
$$

Proof. The integral in the theorem can be interpreted as a double integral:

$$
I=\int_{0}^{1} \frac{d x}{x} \int_{f(x)}^{1} \frac{d y}{y}=\iint_{D} \frac{d x d y}{x y}
$$

where D is a symmetric domain bounded below by $y^{a}-y^{b}=x^{a}-x^{b}$, above by $y=1$, and to the right by $x=1$. Bisect it along its symmetry axis $y=x$ and substitute $y=x t, d y=x d t$ to get

$$
I=2 \iint_{D^{\prime}} \frac{d x d t}{x t}
$$

where D^{\prime} is bounded below by $x^{b-a}=\left(1-t^{a}\right) /\left(1-t^{b}\right)$, above by $t=1$, and to the right by $x=1$. Integrating x we get

$$
I=\frac{2}{b-a} \int_{0}^{1} \log \left(\frac{1-t^{b}}{1-t^{a}}\right) \frac{d t}{t} .
$$

Finally, if we split the logarithm in two and substitute $x=t^{b}$ in the first integral and $x=t^{a}$ in the second, the desired result is obtained.

$$
I=\frac{2}{b-a}\left(-\frac{1}{b}+\frac{1}{a}\right) \int_{0}^{1} \frac{\log (1-x)}{x} d x=\frac{\pi^{2}}{3 a b}
$$

