
A TRICKY INTEGRAL

For every 0 < a < b, a decreasing function f : [0, 1] → [0, 1] can be defined
by f(0) = 1, f(1) = 0 and fa − f b = xa − xb in between. In the simplest
case f2 − f = x2 − x, we have f(x) = 1− x. The following result appeared
with a six pages long proof using series of gamma functions. We suggest an
elementary derivation.
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Proof. The integral in the theorem can be interpreted as a double integral:
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where D is a symmetric domain bounded below by ya− yb = xa−xb, above
by y = 1, and to the right by x = 1. Bisect it along its symmetry axis y = x

and substitute y = xt, dy = x dt to get
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where D′ is bounded below by xb−a = (1− ta)/(1− tb), above by t = 1, and
to the right by x = 1. Integrating x we get
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Finally, if we split the logarithm in two and substitute x = tb in the first
integral and x = ta in the second, the desired result is obtained.
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