1 REPLICA\nTOR EQUATION

The replicator equation for N strategic types with frequencies x_i for $i = 1, \ldots, N$ is given by:

$$\dot{x}_i = x_i (\pi_i - \bar{\pi}),$$

where π_i is the payoff of type i and $\bar{\pi} = \sum_i x_i \pi_i$ denotes the average population payoff. If interactions occur among pairs of individuals (and not in larger groups), the payoffs are given by a matrix $A = [a_{ij}]$, where the element a_{ij} specifies the payoff of an individual of type i interacting with an individual of type j. In that case the replicator equation can be written as

$$\dot{x}_i = x_i ((Ax)_i - x^T A x),$$

using $\pi_i = (Ax)_i$, $\bar{\pi} = x^T A x$ and $x = (x_1, \ldots, x_d)^T$ denotes the current state of the population.

1. Proof the 'quotient rule':

$$\frac{\dot{x}_i}{\dot{x}_j} = \frac{x_i (\pi_i - \bar{\pi})}{x_j (\pi_j - \bar{\pi})}.$$

2. Prove that adding an arbitrary constant to column j of the payoff matrix A does not change the replicator dynamics.

3. Multiply all elements of the payoff matrix by a constant $\lambda > 0$. What are the effects on the replicator dynamics (time scale, equilibria, stability)? What about $\lambda < 0$?

4. Consider the quantity $L = \frac{x_m x_n}{x_k x_l}$ with distinct m, n, k, l. Under what conditions, in terms of the payoffs a_{ij}, is L a constant of motion, i.e. conserved over time?

2 FIXATION PROBABILITIES

Consider the frequency dependent Moran process in an unstructured (well-mixed) population of fixed size N consisting of two types A, B and with payoff matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

If there are i individuals of type A (and $(N - i)$ of type B), the transition probabilities are given by

$$T_i^+ = \frac{if_A}{if_A + (N - i)f_B} \frac{N - i}{N},$$

$$T_i^- = \frac{(N - i)f_B}{if_A + (N - i)f_B} \frac{i}{N}.$$
where \(f_j = 1 - w + w \pi_j \) indicates the fitness of a type \(j \) individual. \(w \) is the selection strength and
\[
\pi_A = [(i - 1)a + (N - i)b]/(N - 1), \quad \pi_B = [i c + (N - 1 - i)d]/(N - 1)
\]
denote the average payoffs of \(A \)'s and \(B \)'s in a population with \(i \) \(A \)'s. Using the recursion

\[
\rho_i = T_i^+ \rho_{i+1} + T_i^- \rho_{i-1} + (1 - T_i^+ - T_i^-)\rho_i,
\]
together with the boundary conditions \(\rho_0 = 0 \) (\(A \)'s will never fixate as there are none to begin with) and \(\rho_N = 1 \) (\(A \)'s have already fixated), the fixation probability of a single \(A \) mutant (all other \(N - 1 \) individuals are of type \(B \)) is

\[
\rho_1 = \frac{1}{N - 1} \prod_{k=1}^{N-1} \gamma_i,
\]
with \(\gamma_i = T_i^- / T_i^+ \).

1. Determine the fixation probability of \(A \)'s in a population with \(i \) individuals of type \(A \), \(\rho_i \).

2. Determine the fixation probability of a single \(B \), \(\hat{\rho}_{N-1} = 1 - \rho_{N-1} \).

Note: the index still denotes the number of type \(A \) individuals in the population.

3 \textbf{Fixation times}

In order to characterize evolutionary dynamics in finite populations a complementary measure to fixation probabilities are fixation times, i.e. the average time until one type has taken over the entire population. In case of two types \(A, B \), there are three distinct fixation times that are relevant:

a. The average time \(t_i \) until \textit{either one} of the two absorbing states (all \(A \) or all \(B \)), is reached when starting with \(i \) individuals of type \(A \). This is the unconditional fixation time or absorption time.

b. The conditional fixation time \(t_i^A \) specifies the average time it takes to reach the absorbing state with all \(A \)'s when starting with \(i \) \(A \)'s. The time \(t_i^A \) increases for smaller \(i \) (i.e. increasing initial distance from all \(A \)). If fixation of \(A \) is almost certain, \(t_i^A \) approaches the unconditional fixation time \(t_i \). Of particular interest is \(t_1^A \), which denotes the average time it takes a single \(A \) to take over a \(B \) population.

c. In analogy to \(t_i^A \), the conditional fixation time \(t_i^B \) represents the average time to reach the absorbing state with all \(B \)'s when starting with \(i \) \(A \)'s (and \(N - i \) \(B \)'s). \(t_i^B \) decreases with increasing \(i \), i.e. with increasing initial distance from all \(A \).

A remarkable and rather surprising symmetry of the Moran process (in fact, of any process where \(i \) changes at most by 1) is the equality \(t_i^A = t_{N-1}^B \), i.e. the conditional fixation time of a single \(A \) is the same as that of a single \(B \) – independent of the actual game! However, this symmetry only holds when starting with a single \(A \) or \(B \), respectively. In general \(t_i^A \neq t_{N-1}^B \) for \(i > 1 \).

1. Unconditional fixation times: the recursion is given by

\[
\begin{align*}
t_i &= T_i^+ t_{i+1} + T_i^- t_{i-1} + (1 - T_i^+ - T_i^-)t_i + 1 \\
&= T_i^+ (t_{i+1} + 1) + T_i^- (t_{i-1} + 1) + (1 - T_i^+ - T_i^-)(t_i + 1)
\end{align*}
\]

(4)

i. Calculate \(t_1 \) given the boundary conditions \(t_0 = t_N = 0 \), which state that fixation has already occurred.

ii. \textit{optional} Calculate \(t_i \).
2. Conditional fixation times

i. Derive a recursive relation for the conditional fixation time, t_A^1.

Note: To account for the fact that the A type reaches fixation, the recursion for t_i, Eq. (4), must be modified to include the fixation probabilities ρ_i, ρ_{i-1} and ρ_{i+1}. Special care is required when dealing with the fact that for each iteration one time step has elapsed, c.f. the second form of Eq. (4).

ii. Calculate t_A^1 using the boundary conditions $\rho_0 t_A^0 = \rho_N t_A^N = 0$ because $\rho_0 = 0$ (A’s cannot fixate) and $t_A^N = 0$ (A’s have already fixated).

iii. *optional* Calculate t_i^A.

3. *Bonus:* Symmetry

Show that $t_A^1 = t_B^{N-1}$ is true. There are at least two approaches to this problem:

i. based on analogous calculations (or symmetry arguments) determine the conditional fixation time of a single B type, t_B^{N-1}, and show their equality.

ii. consider the discrete time Markov chain on the state space $i = 0, 1, \ldots, N$ and proof the symmetry based on the expected time spent in each state on the way to fixation.