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The notion of fundamental clusters is introduced, serving as a rule of thumb to characterize the statistical
properties of the complex behaviour of cellular automata such as spatial 2 £ 2 games. They represent the
smallest cluster size determining the fate of the entire system. Checking simple growth criteria allows us to
decide whether the cluster-individuals, e.g. some mutant family, are capable of surviving and invading a
resident population. In biology, spatial 2 £ 2 games have a broad spectrum of applications ranging from
the evolution of cooperation and intraspecies competition to disease spread. This methodological study
allows simple classi¢cations and long-term predictions in various biological and social models to be made.

For minimal neighbourhood types, we show that the intuitive candidate, a 3 £ 3 cluster, turns out to be
fundamental with certain weak limitations for the Moore neighbourhood but not for the Von Neumann
neighbourhood. However, in the latter case, 2 £ 2 clusters generally serve as reliable indicators to whether
a strategy survives.

Stochasticity is added to investigate the e¡ects of varying fractions of one strategy present at initialization
time and to discuss the rich dynamic properties in greater detail. Finally, we derive Liapunov exponents for
the system and show that chaos reigns in a small region where the two strategies coexist in dynamical
equilibrium.

Keywords: game theory; spatial 2 £ 2 games; cellular automata; criteria for stability;
persistence of strategies

1. INTRODUCTION

2 £ 2 games continue to receive ever increasing attention
as simple models for biological, social and economic
scenarios. Even though they are far too simple to capture
every detail of such complex interactions, they represent
a powerful tool for understanding the characteristics of
such encounters. A well-known and well-studied member
of these 2 £ 2 games is the Prisoner’s Dilemma, which
explains the emergence of cooperative behaviour among
sel¢sh individuals (see, for example, Axelrod &
Hamilton, 1981; Nowak & Sigmund, 1993; Milinski 1987;
Wedekind & Milinski 1996; Fehr & Ga« chter 1999 and
others). Perhaps even better known to behavioural ecolo-
gists is another 2 £ 2 game called Chicken or the Hawk^
Dove game, which describes intraspecies competition
(Maynard Smith & Price, 1973).

Including spatial dimensions has proven to be a very
fruitful extension to evolutionary game theory (see, for
example, Nowak & May 1992; Lindgren & Nordahl 1994;
Herz 1994; Killingback & Doebeli 1998; Eshel et al. 1999,
1998; Hartvigsen et al. 2000). Instead of considering a well
mixed population where all individuals interact with each
other, the individuals are bound to lattice sites and interact
only with their neighbours. Each individual is engaged in
a 2 £ 2 game with each of its neighbours. In these games,
the players have two options: they must choose between
the strategies C and D. The pay-o¡ matrix for the joint
behaviour of the twoplayers is then given by

R
T

S
P

, (1)

where R denotes the pay-o¡ for both players choosing
C, P for mutual D, and for C against D the former
gets S and the latter T. The rank ordering of the four
pay-o¡ values R, S, T and P de¢ne very di¡erent strategic

situations (Posch et al. 1999). For instance, T4R4P4S
de¢nes the Prisoner’s Dilemma where C denotes coopera-
tion and D defection. In this situation, rational players
will opt for defection because it pays more, regardless of
the opponent’s decision. Consequentially, both players
end up with P points only instead of the reward R for
mutual cooperation; hence the dilemma.

Without loss of generality, we assume that R4P and
normalize the pay-o¡ values such that R ˆ 1 and P ˆ 0
holds. In case R > P does not hold, we simply inter-
change C and D. Using this convention, each game is
represented by a point in the S,T -plane. The di¡erent
rank ordering of R, S,T and P divides the plane into 12
regions as shown in ¢gure 1; each region represents a
certain type of game.

On our lattice, we consider only two kinds of players:
those who always cooperate and those who always defect.
An individual plays the game once with every nearest
neighbour. Scenarios with repeated interactions have
been studied by Nakamaru et al. (1997); Doebeli &
Knowlton (1998) and Brauchli et al. (1999), for example.
In each generation every individual plays with all its
neighbours. At the end of a generation the score of each
individual is determined by summing up its pay-o¡s
against its neighbours. The scores in the neighbourhood,
including the individual’s own score, are ranked; in the
following generation the individual adopts the strategy of
the most successful player. In the case of a tie between the
scores of C- and D-type players, the individual keeps its
original strategy.

In biology, the score of an individual is interpreted in
terms of reproductive success. For the above update rule,
only the most successful strategy is able to reproduce by
taking over neighbouring sites. An equally valid inter-
pretation in social or economic contexts refers to indivi-
duals watching their neighbourhood and adapting the
strategy of the most successful neighbour.
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Even in this simple and completely deterministic situa-
tion, where individuals have no means to develop
complex strategies, lattice dynamics turns out to be
complex (see, for example, Killingback & Doebeli 1998),
leading to intriguing dynamic patterns. Recent develop-
ments and some extensions are given in Nowak &
Sigmund (2000).

The following investigations are aimed at determining
the minimal requirements for a strategy to survive and
invade a world of opponents. These requirements are a
combination of suitable pairs of S,T-values together with a
minimal cluster size. The study of such minimal clusters in
spatial games was initiated by Killingback et al. (1999). We
continue this work and extend it to 2 £ 2 games in general.

2. GROWING CLUSTERS

Before studying the dynamic properties of certain
cluster types, we must de¢ne the neighbourhood of an
individual, i.e. its competitors. Because such games on
grids are actually cellular automata, we consider the two
minimal and commonly used neighbourhood types for
cellular automata: the Von Neumann and the Moore
neighbourhoods. The former consists of the four nearest
neighbours, while the latter includes interactions with the
eight nearest neighbours. For a good introduction to the
pioneering work of Von Neumann and games in general
see Sigmund (1995).

The dynamic behaviour of the cellular automata under
consideration is very complex, e.g. the subsequent state of
one site depends not only on its neighbourhood but also
on the neighbours of its neighbours. With the Moore
neighbourhood, this adds up to 25 cells involved and thus
to 225 transition rules. For this reason we are interested in
simple rules of thumb to determine the long-term
statistical behaviour of the system. We therefore introduce

the notion of fundamental clusters. They must satisfy the
following conditions: ¢rst, if certain growth criteria are
met (see ½½ (a) and (b) below), expansion must continue
inde¢nitely and guarantee the survival of the strategy.
Second, no smaller cluster is able to ful¢l the ¢rst condi-
tion. The role of such clusters, and 3 £ 3 clusters in parti-
cular, in determining the long-term dynamic behaviour of
spatial games was ¢rst pointed out by Killingback et al.
(1999).

Note that the size and shape of fundamental clusters
generally depends on the values of S and T. However, to
obtain simple rules of thumb, we limit our investigations
to clusters of cooperators of square shape. On rectangular
lattices, they have the smallest perimeter-to-area ratio.
This minimizes the line of interference with the surround-
ings, and therefore represents the most favourable situa-
tion for cluster individuals in a hostile environment, i.e.
surrounded by defectors. Thus, if square clusters are
unable to grow in this situation, then no other cluster
shape will be formed.

In the following, we derive the conditions imposed on
S and T such that 3 £ 3 clusters grow along the edges
and/or the corners while parrying attacks by opponents.
Then we investigate for 2 £ 2 games in general whether
expansion and invasion continue inde¢nitely, given that
the growth criteria are satis¢ed for 3 £ 3 clusters, i.e. if
3 £ 3 clusters are fundamental or at least a good approxi-
mation.

(a) The Von Neumann neighbourhood
The Von Neumann neighbourhood consists of the four

nearest neighbours: on the left, right, above and below. In
the following, we derive inequality relations for S and T
such that 1 £ 1, 2 £ 2 and 3 £ 3 clusters grow. For that
purpose, we determine and compare the achieved scores
of a player and its neighbours. We derive su¤cient condi-
tions that the player sticks to its strategy (persistence) and
also neighbours switch to the player’s strategy (expan-
sion). The small ¢gures to the right of the equations indi-
cate the type of interaction considered.

(i) 1 £ 1 clusters grow if

4S4T (persistence)
4S40.

(2)

(ii) 2 £ 2 clusters grow if

2 ‡ 2S4T (persistence)
2 ‡ 2S40.

(3)

(iii) 3 £ 3 clusters:
(a) Corners persist if

3 ‡ S4T . (4)

(b) Corners grow if

2 ‡ 2S4T
2 ‡ 2S40.

(5)

(c) Edges persist if either

2 ‡ 2S4T ,
or

44T .
(6)
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Figure 1. Partitioning of the S,T-plane according to the
di¡erent rank ordering of R, S, T and P with R ˆ 1, P ˆ 0.
Each of the 12 partitions refers to a speci¢c type of 2 £ 2
game. Those of particular interest are named as indicated in
the diagram.

C D

C D

C D



(d) Edges grow if

3 ‡ S4T
3 ‡ S40.

(7)

The di¡erent regions in the S,T-plane resulting from the
above equations are shown in ¢gure 2a. Comparisons of
the above equations yield the following results:

(i) Growth conditions for 2 £ 2 clusters and corners of
3 £ 3 clusters are identical (cf. equations (3) and
(5)).

(ii) If corners of 3 £ 3 clusters grow, edges persist and
vice versa (cf. equations (5), (6) and equations (4),
(7), respectively).

(iii) Inequalities involving the central site occur only in
the second line of equation (6). Note that this condi-
tion can be dropped because the ¢rst part is always
satis¢ed if corners can grow.

(iv) In contrast to the Moore neighbourhood (see equa-
tions (16)̂ (18)), neither corners nor edges growing in
one direction become defeated by defectors attacking
from another side.

As a next step, we investigate the fate of a single 3 £ 3
cluster evolved over several generations as a function of S
and T. This is done by systematically sampling the S,T-
plane and calculating the fraction of cooperators f t

c after
a speci¢ed number of generations t. The result is
displayed in ¢gure 2b.

Comparisons of the growth criteria and the expansion
properties in ¢gure 2a,b determine whether 3 £ 3 clusters
are fundamental. The short answer is `no’. In a more
detailed view, consider the following: for a considerable
area in the S,T-plane, the growth criteria are met, i.e.
edges grow and thus corners persist. Nevertheless, the
cluster dies out after few generations. In ¢gure 2a this
area is marked with a cross.

According to the results derived above, it is straightfor-
ward to check whether 2 £ 2 clusters could meet the
criteria for fundamental clusters. This time the answer is
àlmost’. With the exception of a small area with
2 < T < 4 and close to the boundary delimited by equa-
tion (3), we could not ¢nd any further areas where 2 £ 2
clusters vanish. Near this boundary, a large number of
dynamic domains can be identi¢ed. They range from
isolated C patches and simple growing C clusters to
connected C networks and dynamic fractals. Note that for
T44, growth criteria for 1 £ 1 clusters are weaker than
for 2 £ 2 clusters (see ¢gure 2a). In conclusion, if the
growth criteria for 2 £ 2 clusters hold, the chances are
good that the strategy is able to invade a world of oppo-
nents and will survive forever.

(b) The Moore neighbourhood
The Moore neighbourhood consists of the eight nearest

neighbours including all neighbours reachable by a
chess-kings move. In analogy to the Von Neumann neigh-
bourhood we derive similar but (because of the larger
neighbourhood) slightly more complicated inequality
relationships. As before, the small ¢gures to the right of
the equations indicate the type of interaction considered.

(i) 1 £ 1 clusters grow if

8S4T (persistence)
8S40.

(8)

(ii) 2 £ 2 clusters persist if

3 ‡ 5S42T
3 ‡ 5S4T .

(9)

(iii) 2 £ 2 clusters grow if

3 ‡ 5S42T
3 ‡ 5S40.

(10)
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Figure 2. Von Neumann neighbourhood. (a) Boundaries
in the S,T-plane indicating maximal T- and minimal
S-values for di¡erent cluster sizes and cluster parts to grow.
(b) Fraction of cooperators f t

c originating from a single
3 £ 3 cluster of cooperators in an in¢nite world of defectors.
Black denotes low f t

c while white indicates f t
c close to 1.

Intermediate values are displayed in di¡erent shades of grey.
Technical details: f t

c is calculated on a 49 £ 49 grid after
t ˆ 22 generations as a function of S, T . For t422 the system
evolves as on an in¢nite grid.
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(iv) 3 £ 3 clusters:
(a) Corners persist if

5 ‡ 3S43T
5 ‡ 3S4T ,

(11)

or
843T
84T .

(12)

(b) Edges persist if
3 ‡ 5S43T
3 ‡ 5S40,

(13)

or

843T
842T .

(14)

(c) Corners grow in the indicated directions if

3 ‡ 5S43T
3 ‡ 5S40,

(15)

3 ‡ 5S42T
3 ‡ 5S40,

(16)

and either

5 ‡ 3S43T , (17)
or

843T . (18)

(d) Edges grow in the indicated directions if

5 ‡ 3S43T
5 ‡ 3S40.

(19)

Equations (8)^(19) divide the S,T-plane into di¡erent
regions as shown in ¢gure 3a. Comparing the di¡erent
inequality relationships, the following results are
obtained.

(i) According to equation (19), an edge either invades
all three or none of the accessible sites of opponents.

(ii) If corners grow, they occupy either all ¢ve accessible
sites or only the diagonal site (cf. equation (16) and
minor restrictions according to the following two
remarks).

(iii) The diagonal growth of a corner (see equation (16))
requires special attention. Even though the corner
may grow successfully, further conditions must hold
to guarantee that the corner itself persists. For
certain values of S and T, the corner can be success-
fully attacked by the defector in the middle of the
edge. In that case, the persistence of the edge must
be guaranteed by either the central site (equation
(18)) or the cooperator on the edge (equation (17)).

(iv) The role of the central site is of minor importance.
Only in the tiny parameter region marked with a
cross in ¢gure 3a, where equation (16) holds but
equation (17) does not, does the central site protect
corners and edges against attacks.

(v) Similar to the Von Neumann neighbourhood,
corners of a 3 £ 3 cluster persist if edges grow and
vice versa (cf. equations (11)^(18)) with the afore-
mentioned exception.

To complete the picture, we determine the fate of a
single 3 £ 3 cluster evolved over several generations.
Figure 3b displays the fraction of cooperators f t

c after t
generations as a function of S and T. Comparisons of
¢gure 3a and 3b show that 3 £ 3 clusters expand where the
growth criteria are met. Indeed, we did not ¢nd any S,T-
values where cooperators vanished while satisfying the
growth criteria. However, the following restrictions apply:
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Figure 3. Moore neighbourhood. (a) Boundaries in the S,T-
p lane indicating the maximal T- and minimal S-values for
di¡erent cluster sizes and cluster parts to grow. (b) Fraction
of cooperators f t

c originating from a single 3 £ 3 cluster of
cooperators in an in¢nite world of defectors. Note that the
boundary S ˆ ¡1, T50 is not explained by the growth
conditions of the 3 £ 3 cluster. It is the result of di¡ering
growth conditions of subsequent structures. Colour code for f t

c
and technical details are as in ¢gure 2.
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(i) For very small values of S in the region marked with a
cross in ¢gure 3a, 3 £ 3 clusters are unable to grow.
The corners expand diagonally but the initiated
growth soon wears o¡, resulting in aperiodic cycle.

(ii) The growth capabilities of 1 £ 1 clusters guarantee
persistence and even growth of cooperators in some
regions of the S,T-plane where 3 £ 3 clusters cannot
grow. Even though cooperation may spread, it
remains impossible to form larger clusters. Usually
isolated cooperators are surrounded by frustrated
players constantly changing their strategy. Note that
in this region equation (16) holds while violating
equations (17) and (18).

(iii) Even though we did not ¢nd regions where coopera-
tors systematically vanished, we did ¢nd interesting
con¢gurations where cooperation dies out after
several generations. Figure 4 shows an example of
two colliding 3 £ 3 clusters annihilating in a whirl-
like pattern. On arbitrary but ¢nite sized grids,
cooperators may die out after some time. Interest-
ingly, this was mainly observed for highly
symmetrical con¢gurations. For example, a single
3 £ 3 cluster on a 49 £ 49 grid dies out after 444
generations (e.g. S ˆ 0:05, T ˆ 1:65).

To conclude, the growth capability of 3 £ 3 clusters
generally guarantees in¢nite expansion and survival of a
strategy on in¢nite grids. However, note that the reverse
does not necessarily hold. As mentioned earlier, the diag-
onal growth of corners requires careful treatment.
Although the above restrictions for 3 £ 3 clusters are
rather weak and rarely apply, they should be kept in
mind, particularly when dealing with smaller grid sizes.
Also note that the expansion criteria for 2 £ 3 and 3 £ 3
clusters are identical with the exception of the tiny region
marked with a cross. Thus, it usually su¤ces to verify the
growth conditions for 2 £ 3 clusters. Therefore, both,
2 £ 3 and 3 £ 3 clusters serve as powerful approximations
to fundamental clusters.

3. CLUSTER DYNAMICS

A closer look at the deterministic expansion of a single
3 £ 3 cluster for Von Neumann and Moore neighbour-

hoods (¢gures 2a and 3a) reveals that growth is far less
e¤cient for the former. The smaller Von Neumann
neighbourhood reduces the speed of expansion and leads
to intermediate values for f t

c (indicated by the grey
colouring) even for most favourable S,T -values (lower
right corner). Many of the boundaries separating regions
of di¡erent growth are readily identi¢ed as inequality
relations introduced above. Each boundary speci¢es a
particular type of encounter between cooperators and
defectors. The side of higher S- and lower T-values
favours cooperators, while on the other side defectors are
better o¡. On the boundary itself, it is a draw and the
players stick to their strategy. The most interesting
parameter values are found along the transition region
from dominating defection to prevailing cooperation.
S,T-values from this region lead to fascinating dynamic
patterns, often resembling an evolutionary kaleidoscope
(Nowak & May, 1993).

To discuss the above results in a more general context
and to test their relevance in more realistic scenarios, we
consider randomly initialized grids with a certain fraction
of cooperators f 0

c. It turns out that for considerable
regions of the S,T-plane, the average fraction of
cooperators ·fc sensitively depends on f 0

c . Figures 5 and 6
display ·fc as a function S, T for f 0

c ˆ 0:8 and f 0
c ˆ 0:2,

respectively. As expected, the area where cooperation
dominates is signi¢cantly larger for higher f 0

c (¢gure 5).
In comparison to the clinical situation of a single cluster
(¢gures 2 and 3), new boundaries appear, indicating that
other inequality relations became relevant. The bound-
aries appearing for a single cluster are much more
pronounced for small f 0

c (¢gure 6). This follows from the
rapidly decreasing probability of ¢nding clusters of a
certain size at initialization time for decreasing f 0

c.
Hence, it is very likely that only a few clusters of the
fundamental size are formed.

Striking di¡erences between high and low f 0
c are

observed in the region of low S- and T-values. Here,
neither C nor D clusters of size 3 £ 3 or smaller grow.
The ¢gures clearly show that the initially prevailing
strategy outperforms and further diminishes the minority.
Interestingly, in all other areas it takes only few genera-
tions for the dynamics to level out the initial di¡erences,
leading to very similar patterns.
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Figure 4. The Moore neighbourhood: two particularly arranged 3 £ 3 clusters collide and annihilate producing a beautiful but
fatal whirl-like pattern over ten generations (S ˆ 0:05, T ˆ 1:65). Black sites indicate defectors and white cooperators. Dark grey
speci¢es cooperators that switched to defection in this generation and similarly, light grey denotes defectors that switched to
cooperation. The two latter shades of grey are useful for estimating the activity in the system. Top row from left to right
t ˆ 0 ¡ 5; bottom row from left to right t ˆ 6 ¡ 11.



For most S, T pairs the random initial con¢gurations
evolve towards static patterns with an overwhelming
majority of one strategy together with patchy distribu-
tions of small clusters of the other strategy. In stark
contrast to these rather uninteresting domains, fasci-
nating dynamic patterns emerge for parameters within
the transition region between cooperation and defection.
The dynamic equilibrium between the two strategies

generates a variety of dynamic patterns, such as waves
of cooperators travelling across the grid or small
growing clusters of cooperators splitting periodically. In
addition, similar to Conway’s Game of Life (Berlekamp
et al. 1982), special structures such as blinkers, gliders
and rotators are observed. Generally, the dynamic coex-
istence of cooperators and defectors appears to be stable
with the exception of smaller grid sizes (as noted
above). Note that for S,T values within the transition
region, no part of the grid ever becomes static and
frozen. Every now and then the strategy of every player
gets challenged and possibly changes. In agreement with
our results, the di¡erent dynamic domains have already
been discussed by Nowak & May (1992, 1993) for T41
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Figure 5. Cluster expansion in an inhomogenous environment.
Average fraction of cooperators ·fc as a function of T , S for
(a) Von Neumann and (b) Moore neighbourhood. At t ˆ 0 the
grid was initialized at random with a fraction of f 0

c ˆ 80%

cooperators. To ease comparisons, the various dashed lines
represent the boundaries introduced in ¢gures 2a and 3a,
respectively. Light areas again denote high fractions of
cooperators and dark areas high fractions of defectors.

Technical details: ·fc was calculated on a 49 £ 49 grid,
averaged over 22 generations after a relaxation time of 24
generations and repeated for three realizations. Both, averaging
and relaxation times were chosen to minimize e¡ects of the
¢nite size of the system.
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Figure 6. Cluster expansion in an inhomogenous
environment. Same set-up as in ¢gure 5, only for a lower
initial fraction of cooperators f 0

c ˆ 20%. Note that the
boundary S ˆ ¡1, T50 appearing in ¢gure 3 has almost
vanished for inhomogenous con¢gurations. This stresses the
importance of the growth conditions for the initial 3 £ 3
cluster.



in the limit S ! 0, focusing on the coexistence of C
and D players. This limit separates the Prisoner’s
Dilemma and the Chicken Game. In the S,T-plane,
di¡erent domains leading to speci¢c dynamics can be
identi¢ed. Interestingly, for both neighbourhood types,
some small domains cross the boundary S ˆ 0.
Consequentially, within these parameter domains, the
spatial dynamics of the two games are identical, even
though they describe two rather di¡erent biological or
social scenarios.

In the remaining text we derive quantitative measures
for the dynamic properties of cluster expansion in a
particularly interesting area where C and D players
coexist in dynamic equilibrium. For the Von Neumann
neighbourhood we focus on an area roughly delimited by
the conditions that C corners (see equation (3)) and D
peaks (D surrounded by three C) grow (3T43 ‡ S,
3T44). Similarly, for the Moore neighbourhood the area
under consideration is roughly bounded by the conditions
that C edges (see equation (15)) and D corners grow
(5T45 ‡ 3S, 3T48). In the lower right part of both
areas chaos reigns, indicated by Liapunov exponents
ld40. Details on the de¢nition and calculation of ld are
relegated to Appendix A. Figures 7a and b display ld as a
function of S,T for the appropriate area of the S,T -plane.

To draw a crude picture of the rich dynamics of these
systems, we outline the characteristics for some constant
T (Von Neumann: T º 1:5; Moore: T º 1:7) and
increasing S: for small S, near the left boundary of the
displayed areas, cooperators quickly vanish resulting in
static con¢gurations with an overwhelming majority of
defectors. These rather uninteresting states are char-
acterized by ld < 0. Increasing S eventually allows C
clusters to grow and to build C networks for the Von
Neumann neighbourhood with ld º 0. Once we cross a
crucial boundary (Von Neumann: 2T53 ‡ S; Moore:
3T55 ‡ 3S) the dynamics change completely. Here we
observe dynamic equilibriumproducing intriguingpatterns
such as waves of cooperators travelling across the grid,
but we also ¢nd structures such as growers, gliders,
rotators and blinkers. In this area, the system displays
chaotic dynamics with ld > 0. Further increases in S
enable clusters of decreasing size to grow while increasing
ld. The peak of ld (Von Neumann: ld º 0:75; Moore:
ld º 0:85) lies shortly after the boundary where 1 £ 1
clusters may additionally grow. For still larger S, the
travelling waves eventually decay into many tiny static
areas, mostly consisting of a single site, surrounded by
players constantly changing their strategy. At this stage
(not shown in the ¢gures), the system has returned to
a state with ld < 0. Instead of taking the maximal
Liapunov exponent, we could draw a very similar picture
by considering other quantities such as the power spec-
trum and the autocorrelation. In accordance with chaotic
dynamics, the former becomes continuous and the latter
approximately constant with a ¯ peak around zero.

In spatially extended systems, the timing of the grid
updates is usually of crucial importance. For a detailed
discussion of synchronized versus sequential updating we
refer to Hubermann & Glance (1993) and Nowak et al
(1994a,b). In this paper we restrict our attention to
synchronized grid updates. However, preliminary
simulations have shown that the phase diagrams of the
S,T-plane are hardly a¡ected by the di¡erent update
rules. Generally, the boundaries are slightly shifted in
favour of defectors, and in some regions, where only small
fractions of cooperators were able to survive, they vanish
completely.

4. CONCLUSIONS

Fundamental clusters play an important role in spatially
extended systems. They allow us to predict certain features
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Figure 7. Liapunov exponent ld as a function of S, T in a
small region of the S,T-plane, where C and D players
coexist in dynamic equilibrium. ld for (a) the Von Neumann
and (b) the Moore neighbourhoods. ld40 indicates that the
emerging rich dynamic patterns are produced by weakly
chaotic dynamics. For constant T and increasing S, ld

increases as the minimal cluster size capable of growing
decreases. The peak (Von Neumann: ld º 0:75; Moore:
ld º 0:85) lies shortly after the boundary where 1 £ 1 clusters
may additionally grow. For still larger S-values ld decreases
again and soon returns to negative values.



of the long-term behaviour simply by checking the growth
criteria of such clusters. If they are met, the cluster-
individuals are able to survive and successfully invade a
world of opponents. Usually such cluster-individuals are
considered to be some sort of mutant family attempting to
invade a resident population.

For instance, for the Prisoner’s Dilemma we deduce from
¢gures 5 and 6 that, regardless of the neighbourhood type,
cooperative behaviour spreads only for large S and small
T , i.e. S ! 0, T ! 1. For a small range of S,T-values
cooperators and defectors coexist, but generally clusters of
cooperators are without hope and vanish quickly.

For minimal neighbourhood types, such as the Von
Neumann and Moore neighbourhoods, 3 £ 3 clusters are
intuitive candidates to serve as fundamental clusters. For
the Von Neumann neighbourhood 3 £ 3 clusters are not
fundamental. For a considerable range of the parameter
space S, T 3 £ 3 clusters grow in the ¢rst generation,
satisfying the growth criteria, but then they quickly
vanish. However, the smaller 2 £ 2 clusters turn out to be
almost fundamental. With the exception of a tiny region
in the S,T -plane we could not ¢nd further regions where
2 £ 2 clusters vanish. Thus, the growth criteria for 2 £ 2
clusters are reliable indicators regarding the long-term
fate of the cluster individuals.

For the Moore neighbourhood, the growth of 3 £ 3
clusters indeed guarantees in¢nite expansion with certain
weak restrictions. We did not ¢nd areas in the S,T-plane
where 3 £ 3 clusters systematically vanished while satis-
fying the growth criteria. However, we found interesting
con¢gurations that did vanish. For example, two colliding
3 £ 3 clusters may annihilate or, on smaller grids with
periodic boundary conditions, highly symmetrical
con¢gurations suddenly disappear. Moreover, along one
boundary of a tiny region (marked with a cross in
¢gure 3a) growth is limited to a small area around 3 £ 3
clusters and hence violates conditions for fundamental
clusters. With the exception of this tiny region, 2 £ 3
clusters satisfy identical growth criteria. Thus, for the
Moore neighbourhood 2£ 3 and 3 £ 3 clusters both
serve as powerful approximations to fundamental clusters
allowing for reliable predictions.

For stochastical initialization of the grid with a certain
fraction of cooperators f 0

c , we show that for considerable
regions of the S, T plane the average fraction of coopera-
tors ·fc sensitively depends on f 0

c . Mostly in areas where
3 £ 3 or smaller clusters of neither C nor D players grow
(low S and low T), the initial majority dominates and
further diminishes the minority. In general, however,
di¡erences to results for a single cluster are surprisingly
small. It appears that the growing clusters level out most
of the initial di¡erences.

Finally, we introduced a simple measure ld, by analogy
to Liapunov exponents, to characterize dynamic proper-
ties of ¢nite systems discrete in time and space. This
indicates that chaotic dynamics (ld40) are responsible
for the fascinating patterns generated in the small region
of the S,T -plane where C and D players coexist in
dynamic equilibrium.

Ch.H would like to thank Karl Sigmund for inspiring discus-
sions and helpful comments on the manuscript. This work was
supported by the Swiss National Science Foundation.

APPENDIX A: METHODS

(a) Determining Liapunov exponents for systems
discrete in time and space

The maximal Liapunov exponent lmax is used to characterize
dynamic properties of a system. For lmax > 0 the system is
chaotic, linear for lmax ˆ 0 and attractive for lmax < 0, i.e. small
disturbances undergo an exponential ampli¢cation, remain
constant or vanish in short time. For a brief introduction we
refer to Schuster (1995).

In this Appendix we derive an analogous quantity ld for
systems discrete in time and space. Because ld allows for very
similar classi¢cations of the systems dynamics, we refer to it as a
Liapunov exponent.

Consider an n £ m grid, on which a speci¢ed fraction of coop-
erators f 0

c is randomly distributed. Let the system relax by evol-
ving it over at least max(n, m)/2 generations. This corresponds
to the minimal time it takes to spread information across the
entire grid. In a next step, the relaxed state is duplicated and in
one copy the strategy of e ½ n ¢ m randomly chosen players is
changed from C to D and vice versa. The Hamming distance dt

is used to determine the di¡erence of the two copies. It indicates
the number of sites occupied by unequal strategies at time t.
Thus, the initial distance of the two copies is dt4 e. ld is derived
from the time evolution of dt when evolving the two copies in
parallel:

ld ˆ
1
N

N

tˆ0

ln
dt‡ 1

dt
. (20)

For the systems under consideration, two problems arise from
equation (20): ¢rst, dt cannot become arbitrarily large due to
the ¢nite size of the grid. This puts an upper limit to the mean-
ingful number of updates N and consequentially the accuracy of
ld. Second, for e41 disturbances initiated by the di¡erent seeds
expand independently and interfere in an unpredictable manner.
This puts further restrictions on N. Also note that e41 must
hold to allow for negative values of ld.

Problems arising from numerical over£ow are usually solved
by periodically rescaling dt while preserving its direction in
multidimensional systems. For cellular automata such rescaling
is impossible because of the binary character of the system. For
this reason, we repeat the above procedure and take the average
to obtain ld. Averaging over di¡erent initial disturbances is
important because often the time evolution of dt sensitively
depends on the immediate neighbourhood of the £ipped sites.

An important restriction of the outlined procedure concerns
parameter ranges with ld close to zero with static con¢gurations
of the grid. In those regions, small disturbances often lead to
short bursts of activity with dt quickly approaching a constant
value. By inspection it is readily seen that ld ! 0, but the
numerical procedure typically returns positive values. However,
the unreliable results are revealed by a signi¢cantly higher stan-
dard deviation.
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