MATH 3017 Lecture 15

\[S = \{ \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} \mid x_1 + x_2 = 0 \} \subseteq \mathbb{R}^3 \]

For \[\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}, \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} \in S, \alpha \in \mathbb{R} \]

\[\begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ 0 \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ 0 \end{bmatrix} \in S \]

\[x_1 + y_1 + x_2 + y_2 = \frac{x_1 + x_2 + y_1 + y_2}{\mathbb{R}} = 0 \]

\[\alpha \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ 0 \end{bmatrix} \in S \]

\[\alpha x_1 + \alpha x_2 = \alpha (x_1 + x_2) = 0 \]

\[\therefore S \text{ is a subspace of } \mathbb{R}^3 \]
Actually, S is a line in \mathbb{R}^3.

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 0
\end{bmatrix} = \begin{bmatrix}
 x_1 \\
 -x_1 \\
 0
\end{bmatrix} = x_1 \begin{bmatrix}
 1 \\
 -1 \\
 0
\end{bmatrix}
\]

So, $S = \left\{ x \begin{bmatrix}
 1 \\
 -1 \\
 0
\end{bmatrix} \mid x \in \mathbb{R} \right\}$ a line

![Vector diagram]

\[5 \quad S = \left\{ \begin{bmatrix}
 x_1 \\
 x_2 \\
 0
\end{bmatrix} \mid x_1, x_2 \in \mathbb{R} \right\} \subseteq \mathbb{R}^3 \]

\Rightarrow A plane in \mathbb{R}^3.
II. 1.2. Linear dependence and independence.

Def: A linear combination of vectors v_1, v_2, \ldots, v_k is

$$\sum_{i=1}^{k} c_i v_i = c_1 v_1 + c_2 v_2 + \ldots + c_k v_k$$

for some $c_1, \ldots, c_k \in \mathbb{R}$.

Def: The vectors v_1, \ldots, v_k are linearly dependent if there exists not all zero c_1, \ldots, c_k with $\sum_{i=1}^{k} c_i v_i = \mathbf{0}$.

Example:

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \end{bmatrix},$$

$$1 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 6 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} + (-1) \cdot \begin{bmatrix} 7 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \mathbf{0}.$$
If v_1, \ldots, v_k are linearly dependent
$c_1v_1 + \cdots + c_kv_k = \mathbf{0}$ where not all c_j's are zero.
Say $c_j \neq 0$

$\Rightarrow v_j = -\frac{1}{c_j} (c_1v_1 + \cdots + c_{j-1}v_{j-1} + c_{j+1}v_{j+1} + \cdots + c_kv_k)$

v_j is dependent on the other vectors.

Def: The vectors v_1, \ldots, v_k are linearly independent if

$\sum_{i=1}^{k} c_i v_i = \mathbf{0}$ implies $c_1 = c_2 = \cdots = c_k = 0$.

Q: How can you check whether given vectors v_1, \ldots, v_k are linearly independent or dependent?
Easy cases:

1. For \(\{ \mathbf{v}_i \rightarrow \mathbf{v}_k \} \) if there exist
 \[\mathbf{v}_i = \alpha \mathbf{v}_j \] for some \(\mathbf{v}_i \) and \(\mathbf{v}_j \)

\[\Rightarrow \mathbf{v}_i - \alpha \mathbf{v}_j = \mathbf{0} \]

\[\Rightarrow \text{Linearly dependent.} \]

\[\Rightarrow \mathbf{v}_i = \alpha \mathbf{v}_j \]

\[\Rightarrow \text{They are on the same line.} \]

2. \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \) are on the plane.

\[\Rightarrow \mathbf{v}_1 = \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 \]

\[\Rightarrow \mathbf{v}_1 - \beta \mathbf{v}_2 - \gamma \mathbf{v}_3 = \mathbf{0} \]

\[\Rightarrow \text{Linearly dependent!} \]
So if \(v_1, v_2, v_3 \in \mathbb{R}^2 \), they are linearly dependent!

We want a systematic method to determine the linear independence of given \(v_1, \ldots, v_k \).

Suppose \(c_1 v_1 + c_2 v_2 + \cdots + c_k v_k = 0 \) \hspace{1cm} (v; \in \mathbb{R}^n)

We can rewrite this in the matrix notation.

\[
\begin{pmatrix}
 v_1 & v_2 & v_3 & \cdots & v_k \\
\end{pmatrix}
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_k \\
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
\end{bmatrix}
\]

(\star)
0 Linearily independent

$\iff C_i = 0$ for all C_i

$\iff C = \begin{bmatrix} \cdot \\ 0 \\ \vdots \\ 0 \end{bmatrix}$, the zero vector is the unique solution to (\star).

0 Linearily dependent

\iff some $C_i \neq 0$

\iff There is a nonzero vector solution to (\star).

There are two possible cases depending on n and k.

the size of A of vectors.
\(1 \quad k \leq n \)

\((*) \quad Vc = 0 \)

\(\iff [V : 0] \)

\(\iff [R : 0] \quad R = \text{rref}(V) \)

\(\iff Rc = 0 \quad \underline{This \ equation \ has \ the \ same \ solutions \ as \ (*)} \)

\text{Ex} \quad k = 3, \ n = 4

\(R = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
c_1 \\
c_2 \\
c_3
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \)

\(\Rightarrow \text{All columns are pivots,} \)

\(\Rightarrow c = 0 \), i.e., \text{linearly independent,} \)
Ex. \(R = \begin{bmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 0 \end{bmatrix} \)

\[\begin{aligned} &\Rightarrow \text{There is a free variable.} \\
&\Rightarrow \text{There is infinite # of solutions, so there is} \\
&\text{C} \neq \emptyset \text{ s.t. } Vc = 0. \\
&\Rightarrow V_1, V_2, V_3 \text{ are linearly dependent,} \end{aligned} \]