Math 517 (PDE II), Spring 2008

Lecture plan and summary:

1
Jan. 7
brief organizational meeting
2
Jan. 9
Part I. Parabolic Equations.
The heat equation: fundamental solution, mean-value property, maximum principle, uniqueness (Evans 2.3).
3
Jan. 11
Heat equation: maximum principle, (non-)uniqueness on R^n, backward uniqueness (Evans 2.3, John).
4
Jan. 14
Linear parabolic equations: existence and uniqueness of weak solutions (Evans 7.1).
5
Jan. 16
Linear parabolic: regularity of weak solutions (Evans 7.1).
6
Jan. 18
Linear parabolic: Nash-Moser theory, L^\infty bound (Taylor III 15.9).
7
Jan. 21
Linear parabolic: maximum principles, Harnack inequality (Evans 7.1).
8
Jan. 23
Linear parabolic: proof of Harnack inequality in a special case (Evans 7.1).
9
Jan. 25
Linear parabolic: Nash-Moser theory, weak Harnack inequality and Holder continuity (Taylor III 15.9).
10
Jan. 28
Linear parabolic: quick overview of semigroup theory (Evans 7.1).
11
Jan. 30
Semilinear parabolic equations: abstract local existence theorem (Taylor III 15.1).
12
Feb. 4
Semilinear parabolic: local existence for reaction-diffusion systems in various spaces (McOwen 11.2).
12
Feb. 6
Semilinear parabolic: global existence examples: harmonic map heat-flow, reaction diffusion (Taylor III 15.1-15.2).
13
Feb. 8
Semilinear parabolic: blow-up and asymptotic behaviour for some reaction-diffusion equations (McOwen 11.3).
14
Feb. 11
Gradient flows: of convex functionals in Hilbert space (Evans 9.6).
15
Feb. 13
Gradient flows: application to some quasilinear parabolic equations (Evans 9.6).
16 Feb. 15
Gradient flows: general metrics.
17 Feb. 25
Gradient flows: in the Wasserstein metric, and the porous medium equation (Villani 8.3).
18
Feb. 27
Part II. Hyperbolic and Dispersive Equations.
Wave equation: fundamental solutions and basic properties (Evans 2.4).
19
Feb. 29 Free Schroedinger equation: fundamental solutions and basic properties (Cazenave 2).
20
Mar. 3 Linear hyperbolic equations: weak solutions and regularity (Evans 7.2).
21
Mar. 5
Linear hyperbolic: geometric optics, Hamilton-Jacobi equations, characteristics (Evans 7.2).
22
Mar. 7
Linear hyperbolic: finite speed of propagation (Evans 7.2).
23
Mar. 10
Semilinear wave equations: local existence, global existence, blow-up (McOwen 12.3; Strauss 4).
24
Mar. 12
Nonlinear Schroedinger equations: Strichartz estimates (Cazenave 2.3).
25
Mar. 14
Nonlinear Schroedinger: local existence (Cazenave 4).
26
Mar. 17
Nonlinear Schroedinger: global existence vs. blow-up (Cazenave 6).
27
Mar. 19
Nonlinear Schroedinger: standing waves and their stability (Cazenave 8).
28
Mar. 26
Conservation laws: 1D scalar: characteristics, weak solutions, R-H condition, shocks (Evans 3.4)
29
Mar. 28
Conservation laws: 1D scalar: rarefaction waves, non-uniqueness, entropy condition (Evans 3.4)
30
Mar. 31
Conservation laws: 1D scalar: uniqueness of entropy solutions
31
Apr. 2
Conservation laws: 1D scalar: Riemann problem, Lax-Oleinik formula, asymptotics (Evans 3.4)
32
Apr. 4
Conservation laws: systems in 1D: hyperbolicity, simple waves
33
Apr. 7
Conservation laws: systems in 1D: k-rarefaction waves, k-shocks
34
Apr. 9
Conservation laws: systems in 1D: local solution of Riemann's problem