Review of Measure Theory

Let X be a nonempty set. We denote by $\mathcal{P}(X)$ the set of all subsets of X.

Definition 1 (Algebras)

(a) An **algebra** is a nonempty collection \mathcal{A} of subsets of X such that

 i) $A, B \in \mathcal{A} \implies A \cup B \in \mathcal{A}$

 ii) $A \in \mathcal{A} \implies A^c = X \setminus A \in \mathcal{A}$

(b) A collection \mathcal{A} of subsets of X is a **σ–algebra** if it is an algebra that is closed under countable unions. That is, $\{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A} \implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$.

(c) If $\mathcal{E} \subset \mathcal{P}(X)$, then the **$\sigma$–algebra generated by** \mathcal{E} is

$$\mathcal{M}(\mathcal{E}) = \bigcap \{ \Sigma \mid \Sigma \text{ is a } \sigma\text{-algebra containing } \mathcal{E} \}$$

(d) If X is a metric space (or, more generally, a topological space) then the **Borel σ–algebra** on X, denoted \mathcal{B}_X, is the σ–algebra generated by the family of open subsets of X.

Definition 2 (Measures)

(a) A **finitely additive measure** on the algebra $\mathcal{A} \subset \mathcal{P}(X)$ is a function $\mu : \mathcal{A} \rightarrow [0, \infty]$ such that

 i) $\mu(\emptyset) = 0$

 ii) If $\{E_1, \cdots, E_n\}$ is a finite collection of disjoint subsets of X with $\{E_1, \cdots, E_n\} \subset \mathcal{A}$, then

$$\mu\left(\bigcup_{j=1}^{n} E_j \right) = \sum_{j=1}^{n} \mu(E_j)$$

(b) A **premeasure** on the algebra $\mathcal{A} \subset \mathcal{P}(X)$ is a function $\mu : \mathcal{A} \rightarrow [0, \infty]$ such that

 i) $\mu(\emptyset) = 0$

 ii) If $\{E_j\}$ is a countable collection of disjoint subsets of X with $\{E_j\} \subset \mathcal{A}$ and $\bigcup E_j \in \mathcal{A}$, then

$$\mu\left(\bigcup E_j \right) = \sum_{j} \mu(E_j)$$

(c) A **measure** on the σ–algebra $\mathcal{M} \subset \mathcal{P}(X)$ is a function $\mu : \mathcal{M} \rightarrow [0, \infty]$ such that

 i) $\mu(\emptyset) = 0$

 ii) If $\{E_j\}$ is a countable collection of disjoint subsets of X with $\{E_j\} \subset \mathcal{M}$, then

$$\mu\left(\bigcup E_j \right) = \sum_{j} \mu(E_j)$$

If μ is a measure on the σ–algebra $\mathcal{M} \subset \mathcal{P}(X)$, then (X, \mathcal{M}, μ) is called a measure space.
(d) A measure \(\mu \) on the \(\sigma \)-algebra \(\mathcal{M} \subset \mathcal{P}(X) \) is called

i) **finite** if \(\mu(X) < \infty \)

ii) **\(\sigma \)-finite** if there is a countable collection \(\{E_n\}_{n \in \mathbb{N}} \subset \mathcal{M} \) of subsets with \(X = \bigcup_{n=1}^{\infty} E_n \) and with \(\mu(E_n) < \infty \) for all \(n \in \mathbb{N} \).

iii) **semifinite** if for each \(E \in \mathcal{M} \) with \(\mu(E) = \infty \), there is an \(F \in \mathcal{M} \) with \(0 < \mu(F) < \infty \) and \(F \subset E \).

iv) **complete** if

\[
N \in \mathcal{M}, \quad \mu(N) = 0, \quad Z \subset N \implies Z \in \mathcal{M}
\]

v) **Borel** if \(X \) is a metric space (or, more generally a topological space) and \(\mathcal{M} \) is \(B_X \), the \(\sigma \)-algebra of Borel subsets of \(X \).

(e) An outer measure on \(X \) is a function \(\mu^* : \mathcal{P}(X) \to [0, \infty] \) such that

i) \(\mu^*(\emptyset) = 0 \)

ii) If \(E \subset F \), then \(\mu^*(E) \leq \mu^*(F) \).

iii) If \(\{A_j\} \) is a countable collection of subsets of \(X \), then

\[
\mu^*\left(\bigcup_j A_j\right) \leq \sum_j \mu^*(A_j)
\]

(f) Let \(\mu^* \) be an outer measure on \(X \). A subset \(A \subset X \) is said to be \(\mu^* \)-**measurable** if

\[
\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c)
\]

for all \(E \subset X \).

Theorem 3 Let \((X, \mathcal{M}, \mu) \) be a measure space and \(E, F, E_1, E_2, \ldots \in \mathcal{M} \).

(a) **(Monotonicity)** If \(E \subset F \), then \(\mu(E) \leq \mu(F) \).

(b) **(Subadditivity)** \(\mu\left(\bigcup_{n=1}^{\infty} E_n\right) \leq \sum_{n=1}^{\infty} \mu(E_n) \)

(c) **(Continuity from below)** If \(E_1 \subset E_2 \subset E_3 \ldots \), then \(\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n) \).

(c) **(Continuity from above)** If \(\mu(E_1) < \infty \) and \(E_1 \supset E_2 \supset E_3 \ldots \), then \(\mu\left(\bigcap_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n) \).

Theorem 4 **(Completion)** Let \((X, \mathcal{M}, \mu) \) be a measure space. Set

\[
\mathcal{N} = \{ N \in \mathcal{M} \mid \mu(N) = 0 \}
\]

\[
\mathcal{M} = \{ E \cup Z \mid E \in \mathcal{M}, \ Z \subset N \text{ for some } N \in \mathcal{N} \}
\]

\[
\bar{\mu} : \mathcal{M} \to [0, \infty] \text{ with } \bar{\mu}(E \cup Z) = \mu(E) \text{ for all } E \in \mathcal{M} \text{ and } Z \subset N \text{ for some } N \in \mathcal{N}
\]

Then

(a) \(\mathcal{M} \) is a \(\sigma \)-algebra.

(b) \(\bar{\mu} \) is a well-defined, complete measure on \(\mathcal{M} \), called the completion of \(\mu \).

(c) \(\bar{\mu} \) is the unique extension of \(\mu \) to \(\mathcal{M} \).
Proposition 5 Let \(E \subset \mathcal{P}(X) \) and \(\rho : E \to [0, \infty] \) be such that \(\{\emptyset, X\} \subset E \) and \(\rho(\emptyset) = 0 \). Define, for all \(A \subset X \),
\[
\mu^*(A) = \inf \left\{ \sum_{n=1}^{\infty} \rho(E_n) \mid \{E_n\}_{n \in \mathbb{N}} \subset E, \ A \subset \bigcup_{n=1}^{\infty} E_n \right\}
\]
Then \(\mu^* \) is an outer measure.

Theorem 6 (Carathéodory) Let \(\mu^* \) be an outer measure on \(X \) and \(\mathcal{M}^* \) be the set of \(\mu^* \)-measurable subsets of \(X \). Then
(a) \(\mathcal{M}^* \) is a \(\sigma \)-algebra.
(b) The restriction, \(\mu^* \mid \mathcal{M}^* \), of \(\mu^* \) to \(\mathcal{M}^* \) is a complete measure.

Proposition 7 Let \(F : \mathbb{R} \to \mathbb{R} \) be nondecreasing and right continuous. Define \(F(\pm \infty) = \lim_{x \to \pm \infty} F(x) \). Set
\[
\mathcal{A} = \{\emptyset\} \cup \left\{ \bigcup_{j=1}^{n} (a_j, b_j) \mid n \in \mathbb{N}, \ -\infty \leq a_1 < b_1 < \cdots < b_n \leq \infty \right\}
\]
\[
\mu_0(\emptyset) = 0
\]
\[
\mu_0\left(\bigcup_{j=1}^{n} (a_j, b_j)\right) = \sum_{j=1}^{n} \left[F(b_j) - F(a_j) \right] \quad \text{for all } n \in \mathbb{N}, \ -\infty \leq a_1 < b_1 < \cdots < b_n \leq \infty
\]
In the above, replace \((a, b]\) by \((a, b)\) when \(b = \infty \). Then \(\mu_0 \) is a premeasure on \(\mathcal{A} \).

Theorem 8 Let
\(A \subset \mathcal{P}(X) \) be an algebra,
\(\mathcal{M} = \mathcal{M}(A) \) be the \(\sigma \)-algebra generated by \(A \),
\(\mu_0 \) be a premeasure on \(A \),
\(\mu^* \) be the outer measure induced by \(\mu_0 \) and
\(\mathcal{M}^* \) be the set of \(\mu^* \)-measurable sets.
Recall that
\[
\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) \mid \{A_n\}_{n \in \mathbb{N}} \subset \mathcal{A}, \ E \subset \bigcup_{n=1}^{\infty} A_n \right\}
\]
Then
(a) \(\mu^* \mid \mathcal{A} = \mu_0 \). That is, \(\mu^* \) extends \(\mu_0 \). That is, \(\mu^*(A) = \mu_0(A) \) for all \(A \in \mathcal{A} \).
(b) \(\mathcal{M} \subset \mathcal{M}^* \) and \(\mu \equiv \mu^* \mid \mathcal{M} \) is a measure that extends \(\mu_0 \).
(c) \(\mathcal{M} \subset \mathcal{M}^* \) and \(\mu \equiv \mu^* \mid \mathcal{M} \) is a measure that extends \(\mu_0 \). That is \(\mu \mid \mathcal{A} = \mu_0 \).
(d) If \(\nu \) is any other measure on \(\mathcal{M} \) such that \(\nu \mid \mathcal{A} = \mu_0 \), then
\[
\nu(E) \leq \mu(E) \quad \text{for all } E \in \mathcal{M}
\]
\[
\nu(E) = \mu(E) \quad \text{if } E \in \mathcal{M} \text{ is } \mu-\sigma\text{-finite. That is, if } E \text{ is a countable union of sets of finite } \mu\text{-measure.}
\]
Corollary 9 Let $F, G : \mathbb{R} \to \mathbb{R}$ be nondecreasing and right continuous.
(a) There is a unique Borel measure μ_F on \mathbb{R} such that $\mu_F((a, b]) = F(b) - F(a)$ for all $a, b \in \mathbb{R}$ with $a < b$.
(b) $\mu_F = \mu_G$ if and only if $F - G$ is a constant function.
(c) If μ is a Borel measure on \mathbb{R} that is finite on all bounded Borel sets, then $\mu = \mu_F$ for

$$F(x) = \begin{cases} \mu((0, x]) & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -\mu((x, 0]) & \text{if } x < 0 \end{cases}$$

Definition 10 Let $F : \mathbb{R} \to \mathbb{R}$ be nondecreasing and right continuous. The Lebesgue–Stieltjes measure, μ_F, associated to F is the complete measure determined (by Carathéodory’s Theorem 6) from the outer measure which is, in turn, determined by Proposition 5 from the premeasure that is associated to F by Proposition 7. The Lebesgue measure, m, is the Lebesgue–Stieltjes measure associated to the function $F(x) = x$.

Theorem 11 (Regularity) Let μ be a Lebesgue–Stieltjes measure, μ^* be the corresponding outer measure and \mathcal{M}^* be the set of all μ^*–measurable sets. This is also the domain of μ.
(a) For all $E \in \mathcal{M}^*$

$$\mu(E) = \inf \left\{ \sum_{n=1}^{\infty} [F(b_n) - F(a_n)] \left| E \subset \bigcup_{n=1}^{\infty} (a_n, b_n) \right. \right\}$$

$$= \inf \{ \mu(O) \mid O \subset \mathbb{R}, \; O \text{ open}, \; E \subset O \}$$

$$= \sup \{ \mu(K) \mid K \subset \mathbb{R}, \; K \text{ compact}, \; K \subset E \}$$

(b) Let $E \subset \mathbb{R}$. The following are equivalent.
(i) $E \in \mathcal{M}^*$
(ii) $E = V \setminus N_1$ where V is G_δ (a countable intersection of open sets) and $\mu^*(N_1) = 0$
(iii) $E = H \cup N_2$ where H is F_σ (a countable union of compact sets) and $\mu^*(N_2) = 0$

Proposition 12 (Invariance) Let m be the Lebesgue measure and \mathcal{L} be the collection of Lebesgue measurable sets. Then
(a) If $E \in \mathcal{L}$ and $y \in \mathbb{R}$, then $E + y = \{ x + y \mid x \in E \} \in \mathcal{L}$ and $m(E + y) = m(E)$.
(b) If $E \in \mathcal{L}$ and $r \in \mathbb{R}$, then $rE = \{ rx \mid x \in E \} \in \mathcal{L}$ and $m(rE) = |r| m(E)$.

October 17, 2008 Review of Measure Theory 4