1. Find the Lebesgue set L_f, if:
 (a) $f : \mathbb{R}^n \to \mathbb{C}$ is continuous;
 (b) $f = \chi_E, E \in \mathcal{B}_{\mathbb{R}^n}$ (Lebesgue) null: $m(E) = 0$;
 (c) $f(x) = |x|$ on \mathbb{R}.

2. (a) If $F : \mathbb{R} \to \mathbb{C} \in \text{NBV}$, show that there is a (Lebesgue) null Borel set $N \subset \mathbb{R}$ such that if $[a, b] \cap N = \emptyset$, then
 \[F(b) - F(a) = \int_a^b F'(t)dt. \]
 (b) Show that if $F : \mathbb{R} \to \mathbb{R}$ is increasing, and $-\infty < a < b < \infty$,
 \[F(b) - F(a) \geq \int_a^b F'(t)dt. \]

3. For the function $F(x) = |x|$ on $[-1, 1]$:
 (a) show directly from the definition that F is absolutely continuous on $[-1, 1]$;
 (b) show directly that F satisfies the FTC: $F(x) - F(-1) = \int_{-1}^x F'(t)dt$.

4. On $(-1, 1), F_1(x) = x^2 \sin \left(\frac{1}{x^2}\right), F_2(x) = x^2 \sin \left(\frac{1}{x^2}\right), F_3(x) = x^2 \sin \left(\frac{1}{x^3}\right) (F_j(0) = 0)$:
 (a) Show that each F_j is (everywhere) differentiable.
 (b) Show that F_1 is absolutely continuous (hence also BV). Hint: show $|F'_1|$ bounded.
 (c) Show F_2 is not BV (hence also not AC). Hint: consider F_2 at $x_n = (\pi/2 + n\pi)^{-1/2}$.
 (d) Show F_3 is absolutely continuous.