(B) Integration (2.1-2.6)

Measurable Functions (2.1)
Def: 1. $(X, m),(Y, \eta) \begin{gathered}\text { measuable } \\ \text { spaces }\end{gathered}$ s.t $\varepsilon_{\sigma-a l y}(m, n)$
$f: X \rightarrow Y$ is \wedge measurable if $f^{-1}(E) \in m \quad \forall E \in \mathcal{R}$
2. $f: X \rightarrow \mathbb{R}$ (or \mathbb{C}) is measumble if it is $\left(M, B_{R}\right)$ or $\left(M, B_{\mathbb{C}}\right)$ menasuable
3. $f: \mathbb{R} \rightarrow \mathbb{R}$ (ar $\mathbb{C})$ is Morel measurable if it is $\left(\mathcal{B}_{\mathbb{R}}, B_{\mathbb{R}}\right)$-meas (or $\left(B_{\mathbb{R}^{\prime}}, \Phi_{\mathbb{R}}\right)$-mas)
4. $f: \mathbb{R} \rightarrow \mathbb{R}(n \mathbb{C})$ is Lebesgue measurable if its $\left(\mathcal{2}, \beta_{\mathbb{R}}\right)$ (or $\left.\left(2, \beta_{\mathbb{C}}\right)\right)$-meas.
Rems: 1 if n is generated by $\varepsilon<n$, $f: x \rightarrow Y$ is measurable \Leftrightarrow $f^{\prime}(E) \in m \forall E<\varepsilon \quad$ (exercise)
in part., $f: X \rightarrow \mathbb{R}$ is meas.

$$
\begin{aligned}
\Leftrightarrow & f^{-1}((a, \infty)) \in m \quad \forall a \\
\Leftrightarrow & f^{-1}([a, \infty)) \\
\Leftrightarrow & f^{-1}((-\infty, a)) \\
\Leftrightarrow & \\
\hline & \\
f^{-1} & (-\infty, a]) \\
& \quad . \\
& 2 \cdot f: \mathbb{R} \rightarrow \mathbb{R} \text { (or } \mathbb{C}) \text { continuous }
\end{aligned}
$$

\Rightarrow Bored measurable
3. composition of meas is meas: $(X, m),(y, n),(z, 0)$ $f: X \rightarrow Y, g: Y \rightarrow Z$ meas
$\Rightarrow \quad g \circ f: X \rightarrow Z$ is meas (exercise)
ex: $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ Bore meas \Rightarrow g of Biel meas.
, 11 Lebesgue $\| \Rightarrow g \circ f$ Lebesgue meas

Detour: product σ-alg's: - $\left\{\left(Y_{\alpha}, \eta_{\alpha}\right)\right\}_{\alpha \in R}$ meas. spaces

$$
\left.\frac{\text { Def. }}{\text { is the }} \frac{\sigma \text { alg. gen. by }\left\{f_{\alpha}\right\}}{" 1 \text { sets }} \right\rvert\, \begin{aligned}
& \cdot X, \text { a set } \\
& \cdot f_{\alpha}: X \rightarrow Y_{\alpha}
\end{aligned}
$$

$$
f_{\alpha}^{-1}(E), E \in \Pi_{\alpha}
$$

- if $X=\prod_{\alpha \in A} Y_{\alpha}$, the product σ-alg $\otimes_{\alpha \in A} n_{\alpha}$ is gen. by coordinate maps $\pi_{\alpha}: X \rightarrow Y_{\alpha}$ (if A is countable, $\otimes_{\alpha \in A} \eta_{\alpha}$ is gen. by $\left\{\prod_{1} E_{\alpha}^{\alpha} \mid E_{q} \in n_{a}\right\}$)

Example: $\mathbb{R}^{n}=\prod_{j=1}^{n} \mathbb{R}$
gen by $\pi_{j}^{-1}(E), E \in B_{R}$
$\sigma_{j}:\left(x_{1}, \ldots, x_{n}\right) \mapsto x_{j}$
Prop:

$$
\text { R: } B_{\mathbb{R}^{n}}=\bigotimes_{j=1}^{n} B_{\mathbb{R}}
$$

(exercise (text) sets. in x^{n}
Fact: $f: X \rightarrow Y=\prod_{\alpha \in i} Y_{\alpha}$ is $\left(m, \otimes_{\alpha \in A} n_{\alpha}\right)$
(exercise/text)

$$
\Leftrightarrow f_{\alpha}:=\pi_{\alpha} \circ f: X \rightarrow Y_{\alpha}
$$

is neasumble $\forall \alpha$

Rem: $f: X \rightarrow \overline{\mathbb{R}}=[-\infty, \infty]$ is measurable if it is $\left(\eta \sim, B_{\bar{D}}\right)$-meas, $\quad B_{\bar{R}}=\left\{E \subset \overline{\mathbb{R}} \left\lvert\, \begin{array}{c}E \cap \mathbb{R}_{\mathcal{R}} \\ \in \mathcal{B}_{\mathbb{R}}\end{array}\right.\right\}$
Prop: (X, m) messmble space

1. $f: x \rightarrow c$ is meas \Leftrightarrow Ref, Inf meas
2. $f, g: X \rightarrow \mathbb{C}$ meas $\Rightarrow f+g, f \cdot g$ meas.

Proof (sketch): 1. $B_{\mathbb{C}}=B_{\mathbb{R}^{2}}=B_{\mathbb{R}} \otimes B_{\mathbb{R}}$

+ "fact" above

$$
\begin{aligned}
& \text { 2. } F: X \rightarrow \mathbb{C} \times \mathbb{C} \quad \phi(z, w):=z+w) \begin{array}{c}
\text { meas. } \\
\text { since }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 3,4 \\
& + \text { comp.lis meas. } \\
& \text { see text } \\
& \text { of meas. }
\end{aligned}
$$

