The plot so far ...

- "length" m_{0}, on the algebra $\mathcal{A}=\{$ finite disjoint unions of h-intervals $\}$, is a premeasure: $\left\{\begin{array}{l}m_{0}(\emptyset)=0 ; \\ \left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A} \text { disjoint, } \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A} \Longrightarrow m_{0}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} m_{0}\left(A_{j}\right)\end{array}\right.$
- countably additive, but on not enough sets
- we try to measure all subsets via (countable!) coverings by sets in \mathcal{A} : $m^{*}(E):=\inf \left\{\sum_{j=1}^{\infty} m_{0}\left(A_{j}\right) \mid E \subset \cup_{j=1}^{\infty} A_{j}, \quad A_{j} \in \mathcal{A}\right\}, \quad$ producing an outer measure: $\left\{\begin{array}{l}m^{*}(\emptyset)=0 ; \\ E \subset F \Longrightarrow m^{*}(E) \leq m^{*}(F) \text {; } \\ m^{*}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} m^{*}\left(E_{j}\right)\end{array}\right.$
- measures all sets, but is merely subadditive
- to recover additivity, we restrict to subsets $A \subset \mathbb{R}$ which are m^{*}-measurable: $\quad \forall E \subset \mathbb{R}, \quad m^{*}(E)=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)$
- Carathéodory's Theorem: $\mathcal{M}:=\left\{m^{*}-\right.$ measurable sets $\}$ is a σ-algebra $m^{*} \upharpoonright_{\mathcal{M}}$ is a (complete) measure
- remaining task: $m^{*} \upharpoonright_{\mathcal{M}}$ extends "length" $: \mathcal{A} \subset \mathcal{M}$ and $m^{*} \upharpoonright_{\mathcal{A}} \equiv m_{0} \upharpoonright_{\mathcal{A}}$
 outer measure: $E \subset X^{\text {alg. }} \quad\left\{\begin{array}{l}\mu_{0}(\underbrace{\sum_{j=1} A_{j}}_{j=1})=\sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)\end{array}\right.$ $N^{*}(E)=\inf \left\{\sum_{j=1}^{\infty} \mu_{0}\left(\xi_{j}\right) \mid E \subset \bigcup_{j=1}^{\infty} E_{j}, E_{j} \in \mathcal{A}\right\}$
Prop: 1. $A \in A \Rightarrow A \Rightarrow N^{*}$-measurable

$$
\text { 2. }\left.\mu^{*}\right|_{A}=\left.\mu_{0}\right|_{A}
$$

Proof: 2 see text

$$
\left(A \subset m(s) \subset \gamma^{\frac{t}{\text { ness }}} c P(x)\right)
$$

1. Let $A \in \mathcal{A}, E \subset X$. Let $\varepsilon>0$. $\exists\left\{A_{j}\right\}_{j=1}^{\infty} \subset A$ st. $\mu^{*}(E)+\varepsilon \geq \sum_{j=1}^{\infty} \mu_{0}\left(A_{j}\right)$ i $E \subset \bigcup_{j=1}^{\infty} A_{j}$

$$
\begin{aligned}
& \mu^{*}(E)+\varepsilon \geq \mu^{*}\left(E_{1} A\right)+\mu^{+}\left(E A^{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \mu^{+}(E) \geq N^{+}(E \wedge A)+\mu^{+}\left(E \cap A^{+}\right) \\
&(\leq \text {for frae }) \Rightarrow \Delta
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow \mu^{+}(E) & \geq \mu^{\top}(E n A)+\mu^{\prime}(E n A T \\
(& \leq \text { for frae }) \Rightarrow A \text { is }
\end{aligned}
$$

Lebesgue Measure on \mathbb{R} (1.5)

$\mathcal{I}=m^{*}$-meas. sets $=$ Lebesou h-inumla mumble sets

- $m=\left.m^{*}\right|_{\mathcal{L}}=\underline{\text { Lebesgue measure }}$ (complete)

Remarks: 1. m is a Bore measure, since

$$
A \underset{\neq B_{\mathbb{R}} \neq \mathcal{L} \subset \mathcal{F}(\Omega)}{ }
$$

2. m is the unique Bore measure st.

$$
m((a, b\})=b-a
$$

Pf: (see text) if μ_{0} is σ-finite an Ω, then N is the! measure on $M(A)$ extruding ρ_{0}
3. can mate the sore construction, starting from $\quad m_{F}(a, b]=F(b)-F(a) \quad(m \leftrightarrow F(x)=x)$ where F is increasing $(x \leqslant y \Rightarrow f(x) \leqslant f(y))$

- right continuous (exercise: w)
\rightarrow Lebesgue-Stieltjes measure, M_{F}, in $\mathcal{B}_{\mathbb{R}}$

4. Prop; μ a Bored meas. on \mathbb{R}, finite on bounded sets:

$$
F(x):=\left\{\begin{array}{lll}
\mu(0, x]) & x>0 \\
0 & \text { is incr., right cant., } & \text { Prof. } \\
-\mu((x, 0)) & x<0
\end{array}\right\} \text { and } \mu=m_{F} \quad \text { text. }
$$

5. M is ofranslation invariant: $m(E+s)=m(E)$

- dilation $11 \quad m(r E)=\operatorname{lr} \min (E)$

Proof: see text (eg: $m_{s}(E):=m(E+s)$ is a Bored measure, so must agree with $m(E)$)

