The plot so far ...

- "length" m_{0}, on the algebra $\mathcal{A}=\{$ finite disjoint unions of h-intervals $\}$, is a premeasure: $\left\{\begin{array}{l}m_{0}(\emptyset)=0 ; \\ \left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A} \text { disjoint, } \bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A} \Longrightarrow m_{0}\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} m_{0}\left(A_{j}\right)\end{array}\right.$
- countably additive, but on not enough sets
- we try to measure all subsets via (countable!) coverings by sets in \mathcal{A} : $m^{*}(E):=\inf \left\{\sum_{j=1}^{\infty} m_{0}\left(A_{j}\right) \mid E \subset \cup_{j=1}^{\infty} A_{j}, A_{j} \in \mathcal{A}\right\}, \quad$ producing an
outer measure: $\left\{\begin{array}{l}m^{*}(\emptyset)=0 ; \\ E \subset F \Longrightarrow m^{*}(E) \leq m^{*}(F) \text {; } \\ m^{*}\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} m^{*}\left(E_{j}\right)\end{array}\right.$
- measures all sets, but is merely subadditive
- to recover additivity, we restrict to subsets $A \subset \mathbb{R}$ which are m^{*}-measurable: $\quad \forall E \subset \mathbb{R}, \quad m^{*}(E)=m^{*}(E \cap A)+m^{*}\left(E \cap A^{c}\right)$
- remaining tasks:
$-m^{*}$-measurable sets are a σ-algebra (containing \mathcal{A}),
- on which m^{*} is a measure, extending "length" m_{0}

Carathéodory's Theorem (1.4)

- outer measure $\mu^{*}: P(X) \rightarrow[0, \infty]$

$$
\mu^{*}(\phi)=0
$$

$$
\begin{aligned}
& \mu^{2}(\phi)=0 \\
& -A\left(B \Rightarrow \mu^{+}(A) \leq \mu^{1}(B)\right.
\end{aligned}
$$

$M:=N^{*}$ measwable sets: $A \subset X$ s.t.

$$
\rightarrow \mu^{*}\left(\bigcup_{j=1}^{0} A_{i}\right) \leq \sum_{j=1}^{\infty} j^{+1}\left(A_{j}\right)
$$

Thm: M is a σ-algebra, and $N^{*} I_{M^{\prime}}$ is a measure.

$$
\begin{aligned}
& \forall E \subset X, \quad \mu^{*}(E)=N^{N^{*}(E \cap A)+\mu^{+}\left(E \cap A^{c}\right)} \text { is artimatic by } \\
& \text { nied to show (1" }{ }^{\prime \prime}
\end{aligned}
$$

Proof: 1. M is an algebra: ie closed under complement $A, B \in M$:

$$
\begin{aligned}
& \mu^{*}(E)=\mu^{*}(E \cap A)+\mu^{*}\left(E \cap A^{c}\right) \\
& =\underbrace{\mu^{*}(E \cap A \cap B)+\mu^{*}\left(E \cap A \cap B^{c}\right)+\mu^{*}\left(E \cap A^{C} \cap B\right)}_{\geq \mu^{*}(E \cap(A \cup B))}+\underbrace{\mu^{*}\left(E \cap \cap A B^{\circ}\right)}_{E_{\cap(A B B)}}
\end{aligned}
$$

2. Γ^{*} is finitely additive an $M: A, B \in M$, disjoint

$$
\Rightarrow \mu^{*}(A \cup B)=\mu^{*}(\underbrace{A \cup B \cap A}_{A})+\mu^{*}(\underbrace{A \cup B \cap A^{c}}_{B})
$$

3. M is closed under cartable disjoint unims (σ hence a $)$) and μ^{*} is camtably additive an $M_{\infty}:\left\{A_{j}\right\}_{j=1}^{\infty} c M$ disjoint
set $B_{n}:=\bigcup_{j=1}^{0} A_{j}, B=\bigcup_{j=1}^{\infty} A_{j}$, let $E \subset X$:

$$
\begin{aligned}
\mu^{*}\left(E \cap B_{n}\right) & =\mu^{*}(\underbrace{E_{n}}_{E \cap B_{n} \cap A_{n}})+\mu^{*}(\underbrace{E_{\cap} B_{n} A_{n}^{c}}_{E_{n} B_{n-1}}) \\
& =\mu^{*}\left(E_{\cap A_{n}}\right)+\mu^{*}\left(E \cap A_{n-1}\right)+\mu^{*}\left(E_{\cap} B_{n-2}\right)=000 \\
& =\sum_{j=1}^{n} \mu^{*}\left(E_{\cap A_{j}}\right)
\end{aligned}
$$

$$
\mu^{*}(E)=\underbrace{\mu^{*}\left(E \cap B_{n}\right)}_{=\sum_{j=1}^{n} \mu^{*}\left(E \cap A_{j}\right)}+\underbrace{\mu^{*}\left(E \cap B_{n}^{c}\right)}_{\geq \mu^{*}\left(E_{\cap} B^{c}\right)} \quad\left(\begin{array}{ll}
\left.\sim_{n}^{c} \text { mokoknicity) }\right)
\end{array}\right.
$$

- take $n \rightarrow \infty^{j-1} \Rightarrow \mu^{*}(E) \geq \sum_{j=1}^{\infty} N^{*}\left(E_{\wedge} A_{j}\right)+\mu^{+}\left(E B^{c}\right)$
- finally, take $E=B \underset{\infty}{\infty}$

$$
\Rightarrow \mu^{*}(B)=\sum_{j=1}^{\infty} \mu^{*}\left(A_{j}\right)+\mu^{*}(\phi){ }_{0}
$$

\Rightarrow additivity \checkmark
$\Rightarrow \mu^{*} I_{m}$ is a measure
.completeness: if $N \in M, N^{*}(N)=0$ and

$$
F \subset N \Rightarrow F \in M
$$

note: $N^{*}(F)=0$. (exercise)
-next: - $A \subset m^{*}$-measumbesets

- $\left.m^{*}\right|_{A}=\left.m_{0}\right|_{A}$

