Differentiation on $\mathbb{R}(3.5),\left(\mathbb{R}, B_{R 1} m\right)$
know: $f \in L_{\text {lox }}^{1}, F(x)=\int_{a}^{x} f(t)$ oft
$\Rightarrow F$ is diff. are. and $F^{\prime}=f$ a.e. - goal: characterize such F (ie. for which F do we have a $F T C$?)

Increasing functions: $\quad x<y \Rightarrow F(x) \leq F(1)$
Thy: $F: \mathbb{R} \rightarrow \mathbb{R}$ increasing

1. F has countably many discontinuities
2. F is differentiable ace.
3. $G(x):=F(x+)$, then G is diff. ae, and $G^{\prime}=F^{\prime}$ ace.

Pf: 1. consider V intervals $\{(F(x-), F(x+))\}_{x \in \mathbb{R}}$ disjoint
(since incising) $\quad\left(x<y \nRightarrow F\left(x_{+}\right) \leq F(y)\right)$
So $|x| \leq N \Rightarrow F(-N) \leq F(x-) \leq F(x+1) \leqslant F(N)$

$$
\begin{aligned}
& \Rightarrow \quad \bigcup_{\mid, 1 \leq N}(F(x-), F(x+1)) \subset[F(N), F(N)] \\
& \Rightarrow \quad \sum_{|x| \leq N}(F(x+1)-F(x-)) \leq F(N)-F(-N)<\infty
\end{aligned}
$$

$\Rightarrow F(x, 1)>F(x-)$ for countably may y $x,|x| \leq N$
3. G is increasing, night cantinous $\longrightarrow L-S$ neasure m_{G}, regular s.t. $G(x)=\left\{\begin{array}{cl}m_{G}((0, x]) & x>0 \\ G_{0} & x=0 \\ -m_{G}((x, 0)) & x>0\end{array}\right.$
so $\frac{G(x+h)-G(x)}{h}=\frac{1}{h}\left\{\begin{array}{cc}m_{G}(x, x+h] & h>0 \\ -m_{G}(x+h, h] & h<0\end{array}\right.$
$\begin{aligned} & \text { lebesgue } \\ & \text { decomp }\end{aligned} m_{G}=\underset{\Delta m}{\lambda}+\bigodot_{<m}, d \rho=\frac{d \rho}{d n} d m$

- so as $h \rightarrow 0+\quad\left(x_{1} x+h\right]$ shrinks "nicely" to x :

$$
\begin{aligned}
& \Rightarrow \frac{G(x+h)-G(x)}{h}\left\{\begin{array}{l}
\cdot(x, x+h] c(x-2 h, x+2 h) \\
\cdot m(x, x+h] \geq \frac{1}{4} m((x-2 h, x+2 h))
\end{array}\right. \\
&=\frac{m_{G}((x, x+h])}{m((x, x+h])} \longrightarrow \frac{d \rho}{d m}(x) \underbrace{\text { a.c. }}_{m} x \\
& \cdot \text { also, as } h \rightarrow 0,, \frac{G(x+h)-G(x)}{h} \longrightarrow \frac{d \rho}{d m} \text { ae. } x
\end{aligned}
$$

$\Rightarrow G$ is ane. differentiable

$$
\begin{aligned}
& \text { 2.H }=G_{I}-F \geq 0 \\
& F\left(x_{+}\right) \\
& \{H \neq 0\}=\left\{x_{1}, x_{2}, \ldots\right\} \\
& \Rightarrow H^{\prime}=0 \text { a.e. } x \\
& \Rightarrow F \text { is diff. a.e, } \\
& F^{\prime}=C_{7}^{\prime} \text { a.e. } \\
& \text { coratable } \\
& \underbrace{|x| \leqslant N}_{\pi} \sum_{j, b \leq N \leq N} H\left(x_{j}\right)<\infty \quad\binom{\text { as }}{\text { abuc }} \\
& \text { set } N=\sum_{j} H\left(x_{j}\right) \delta_{x_{j}} \text {, regular } \\
& \text { O a.e. } \\
& \mu \perp m \Rightarrow\left|\frac{H(x+h)-H(x)}{h}\right| \leq \frac{H(x+h)+H(x)}{h} \leq \frac{2 \mu((x, x+h))}{h}
\end{aligned}
$$

