Measure Theory (esp. Lebesgue Measure on \(\mathbb{R} \)) (Ch. 1)

\(X = \{ \text{a set} \} \) (e.g. \(\mathbb{R}, [a, b], \mathbb{R}^n, \mathbb{Z}, \mathbb{Q}, \ldots \))

\(\mathcal{P}(X) = \{ E | E \subseteq X \} \) (e.g. \(X, \emptyset \in \mathcal{P}(X), \emptyset \in \mathcal{P}(\mathbb{R}), \ldots \))

- A measure \(\mu \) of "size" of subsets \(E \subseteq X \) should satisfy:

1. \(\mu(\emptyset) = 0 \)
2. \(\mu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \mu(E_j) \) if \(\{E_j\} \) disjoint
3. \(\mu(E) \geq 0 \)
Examples:

1. \(ECX, \mu(E) = \# \{ x \mid x \in E \} \) "counting measure".

2. Fix \(x_0 \in X \), \(\mu(E) = \begin{cases} 1 & x_0 \in E \\ 0 & x_0 \notin E \end{cases} \) "Dirac measure" \(\mu = \delta_{x_0} \).

What subsets should we measure? All?

Ex: (Folland, p. 20) \(\exists E \subset [0,1] \) s.t. with \(E_r := E + r \ (\text{mod 1}) \)

\[
\begin{cases}
\forall_r \{ E_r \} \text{ disjoint} \\
\bigcup_{r \in \mathbb{Q} \cap [0,1]} E_r = [0,1]
\end{cases}
\]

\(\Rightarrow \) card. 2. is inconsistent with \(\nu([0,1]) = 1 \)

\(\nu(E_r) = \nu(E) \) \(\text{inv.} \)

(exercise)
Any generalization of “length” cannot measure all subsets of \mathbb{R}.

Def: a measure on $(X, M \subseteq \mathcal{P}(X))$ "measurable sets" is a fn. $\mu : M \to [0, \infty]$ satisfying 1.-2. above.

where M is a: (non-empty)

Def: σ-algebra: closed under complement

Def: algebra: closed under complement, finite unions
Exercise:
1. any algebra $\exists \emptyset, X$
2. σ-alg. (alg.) closed under countable \bigwedge (finite \bigvee)
3. \bigwedge σ-alg.'s is a σ-alg.
4. an algebra closed under countable distinct \bigvee is a σ-alg.

Def: for $E \subset P(X)$, the σ-alg. generated by E is

$M(E) =$ smallest σ-alg. containing E

$= \bigwedge$ of all σ-alg. containing E
Example (import): X a topological space. The **Borel σ-alg.** on X is the σ-alg. generated by the open sets \mathcal{B}_X.

Remarks

1. \mathcal{B}_R contains:
 - open sets
 - closed sets
 - countable unions of closed sets ("F_σ sets")

2. \mathcal{B}_R are generated by any of these families:
 - $\{(a,b) \mid a \leq b\}$
 - $\{[a,b]\}$
 - $\{(a,b]\}$
 - $\{a,\infty\}$
 - $\{(-\infty,b)\}$
 (exercise).