Math 217: List of Core Skills

A student successfully completing Math 217 (Fall 2013) should:

- understand vector functions of one variable, their use in describing space curves (their tangent vectors, lengths), and in describing motion in space (position, velocity/speed, acceleration)
- understand functions of several variables, their domains, ranges, graphs, level curves/surfaces, limits, and continuity
- understand the definition, computation, and interpretation of partial derivatives, their relation to the tangent plane and their role in linear approximation, and the notion of differentiability of a function of several variables
- be able to use the various forms of the chain rule for functions of several variables
- know the gradient vector and its meaning, and its relation to level curves/surfaces and to directional derivatives
- be able to find local and global maximum and minimum values of functions of several variables, and to use the Lagrange Multiplier method in the presence of constraints, and understand the Extreme Value Theorem and its role in such problems
- understand the definition and simple applications (eg. volumes, centres of mass) of double/triple integrals, and be able to compute them over regions of TypeI/II(/III) as iterated integrals, possibly using change of variables (including polar, cylindrical or spherical coordinates)
- know what a vector field is
- know how to to compute line integrals of functions (with respect to arc length or one of the coordinates) and vector fields, by parameterizing the curve
- know what the curl and divergence of a vector field are, the basic calculus of div, grad, and curl (eg. product rules with dot or cross products, etc.), and that curl grad $=0$ and div curl $=0$
- know what conservative vector fields are, how to detect them using curl (or its 2D version $Q_{x}-P_{y}$), and the the path-independence property of their line integrals (and the fundamental theorem for line integrals)
- understand parametric surfaces, their normals and surface areas, and how to compute surface integrals of (scalar) functions and vector fields by parameterizing the surface
- understand the statements of the theorems of Green, Stokes, and Gauss (Divergence) and be able to use them to compute/relate line, surface, and double/triple integrals

