Home Notes Homework Midterms Final Exam

### UBC Math 217: Lecture Notes

• Lecture 1 (Sep. 5): vectors in 3D (12.1-12.2)
• Lecture 2 (Sep. 10): dot and cross products; lines and planes
• Lecture 3 (Sep. 11): cylinders and quadric surfaces
• Lecture 4 (Sep. 12): vectors functions, and their derivatives and integrals
• Lecture 5 (Sep. 17): arc length and curvature; motion in space
• Lecture 6 (Sep. 19): functions of several variables
• Lecture 7 (Sep. 24): limits
• Lecture 8 (Sep. 25): continuity
• Lecture 9 (Sep. 26): partial derivatives and tangent planes
• Lecture 10 (Oct. 1): linear approximation
• Lecture 11 (Oct. 2): chain rule
• Lecture 12 (Oct. 8): directional derivatives and the gradient
• Lecture 13 (Oct. 9-10): maximum and minimum values
• Lecture 14 (Oct. 15): Lagrange multipliers
• Lecture 15 (Oct. 16-17): double integrals over rectangles
• Lecture 16 (Oct. 22): double integrals over general regions
• Lecture 17 (Oct. 23): double integrals in polar coordinates
• Lecture 18 (Oct. 24): applications of double integrals; triple integrals
• Lecture 19 (Oct. 29): triple integrals in cylindrical and spherical coordinates
• Lecture 20 (Oct. 30): change of variables
• Lecture 21 (Oct. 31): vector fields and line integrals
• Lecture 22 (Nov. 5): line integrals of vector fields
• Lecture 23 (Nov. 6): conservative vector fields and path independence
• Lecture 24 (Nov. 12): Green's theorem
• Lecture 25 (Nov. 14): curl and divergence
• Lecture 26 (Nov. 19): parametric surfaces
• Lecture 27 (Nov. 20): surface integrals
• Lecture 28 (Nov.21): surface integrals of vector fields and Stokes theorem
• Lecture 29 (Nov. 26-27): the divergence theorem