
 
UBC Math 217: Lecture Notes

Lecture 1 (Sep. 5):
vectors in 3D (12.112.2)

Lecture 2 (Sep. 10):
dot and cross products; lines and planes

Lecture 3 (Sep. 11):
cylinders and quadric surfaces

Lecture 4 (Sep. 12):
vectors functions, and their derivatives and integrals

Lecture 5 (Sep. 17):
arc length and curvature; motion in space

Lecture 6 (Sep. 19):
functions of several variables

Lecture 7 (Sep. 24):
limits

Lecture 8 (Sep. 25):
continuity

Lecture 9 (Sep. 26):
partial derivatives and tangent planes

Lecture 10 (Oct. 1):
linear approximation

Lecture 11 (Oct. 2):
chain rule

Lecture 12 (Oct. 8):
directional derivatives and the gradient

Lecture 13 (Oct. 910):
maximum and minimum values

Lecture 14 (Oct. 15):
Lagrange multipliers

Lecture 15 (Oct. 1617):
double integrals over rectangles

Lecture 16 (Oct. 22):
double integrals over general regions

Lecture 17 (Oct. 23):
double integrals in polar coordinates

Lecture 18 (Oct. 24):
applications of double integrals; triple integrals

Lecture 19 (Oct. 29):
triple integrals in cylindrical and spherical coordinates

Lecture 20 (Oct. 30):
change of variables

Lecture 21 (Oct. 31):
vector fields and line integrals

Lecture 22 (Nov. 5):
line integrals of vector fields

Lecture 23 (Nov. 6):
conservative vector fields and path independence

Lecture 24 (Nov. 12):
Green's theorem

Lecture 25 (Nov. 14):
curl and divergence

Lecture 26 (Nov. 19):
parametric surfaces

Lecture 27 (Nov. 20):
surface integrals

Lecture 28 (Nov.21):
surface integrals of vector fields and Stokes theorem

Lecture 29 (Nov. 2627):
the divergence theorem
