3. Consider the plane S defined by $2u - 3v + w = 0$, and recall that the normal to this plane is the vector $a = [2, -3, 1]$.

(a) Compute the projections of vectors $[1, 0, 0]$ and $[0, 1, 0]$ onto the line spanned by a.

Solution: The projection matrix is $P = \frac{1}{\|a\|^2}aa^T = \frac{1}{14} \begin{bmatrix} 4 & -6 & 2 \\ -6 & 9 & -3 \\ 2 & -3 & 1 \end{bmatrix}$ so the projections are

$$p_1 = P \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 4 \\ -6 \\ 2 \end{bmatrix}$$ and
$$p_2 = P \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -6 \\ 9 \\ -3 \end{bmatrix}.$$

(b) Compute the projections of vectors $[1, 0, 0]$ and $[0, 1, 0]$ onto the subspace defined by S. What is the inner product of each of these projections with $[2, -3, 1]$?

Solution: The complementary projection is $Q = I - P$ so the projections are $q_1 = (I - P) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{14} \begin{bmatrix} 4 \\ -6 \\ 2 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 10 \\ \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -6 \\ 9 \\ -3 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 6 \\ 5 \end{bmatrix} \end{bmatrix}$.

The inner product of each of these projections with $[2, -3, 1]$ is zero.
(c) Find a basis for the subspace of \mathbb{R}^3 defined by S. What is the dimension of this subspace?

Solution: The vectors q_1 and q_2 form a basis. The dimension of this subspace is 2.

(d) The *reflection* of vector x across a subspace is $(2P - I)x$ where I is the identity matrix and P is the matrix projecting x onto the subspace.

i. Draw a sketch to show why this definition of reflection makes sense.

ii. What is the reflection of $[1, 0, 0]$ in plane S?

iii. What is the matrix $(2P - I)^2$?

Solution:

i. [sketch]

ii. The matrix P in this question is the Q of part (b). $(2Q - I) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 2q_1 - \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \\ -4 \end{bmatrix}$

iii. $(2P - I)^2 = 4P^2 - 4P + I = 4P - 4P + I = I$ This makes sense because reflecting twice results in the original vector.
4. Consider the following bivariate data:

\[
\begin{array}{cc}
\text{x} & \text{y} \\
-1 & 0 \\
1 & 1 \\
3 & 1 \\
\end{array}
\]

(a) Draw a sketch showing the approximate least-squares straight-line fit \(y = ax + b \) to this data.

Solution: [sketch]

(b) Write down the least squares (or normal) equation satisfied by \([a \ b]\).

Solution: The equation is \(A^T A [a \ b] = A^T y \) where \(A = \begin{bmatrix} -1 & 1 \\ 1 & 1 \\ 3 & 1 \end{bmatrix} \) and \(y = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \). Explicitly \[
\begin{bmatrix} 11 & 3 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.
\]

(c) What quantity is minimized by the solution to the equation in (b)?

Solution: The minimized quantity is \(\| A \begin{bmatrix} a \\ b \end{bmatrix} - y \|^2 = (-a + b - 0)^2 + (a + b - 1)^2 + (3a + b - 1)^2 \).
[13] 4. Let S be the subspace of \mathbb{R}^4 spanned by $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ -1 \\ -1 \\ 4 \end{bmatrix}$, and $\begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix}$. Given the MATLAB/Octave calculation:

```matlab
> rref([1 2 4; 1 -1 1; 1 -1 1])
ans =
    1   0   2
    0   1   1
    0   0   0
```

(a) [7 pts] Find the matrix P that projects onto S.

(b) [6 pts] Write down the MATLAB/Octave commands that find the vector in S closest to $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$.

3. Let \(S = \{ [x_1, x_2, x_3]^T : x_1 + x_2 + x_3 = 0 \} \) be the subspace of vectors in \(\mathbb{R}^3 \) whose components sum to zero.

(a) [2 pts]
Find a matrix \(A \) so that \(S \) is the null space of \(A \), i.e., \(S = \text{N}(A) \).

(b) [3 pts]
Write down a basis for \(S \).

(c) [3 pts]
Find a matrix \(B \) so that \(\text{R}(B) = S \)
(d) [4 pts]
Write down the MATLAB/Octave code that
(i) computes the projection matrix P that projects onto S and
(ii) computes the vector in S that is closest to $[0,1,0]^T$.

(e) [4 pts]
Let $Q = I - P$. What kind of matrix is Q? What are $N(Q)$ and $R(Q)$?
Exercises Projection

Problem 1. Let P be the orthogonal projection matrix that projects vectors onto the subspace S. In terms of P, what is the matrix R that performs the orthogonal reflection across the subspace S? For example, if S is the x_1-x_2 plane, R would map the vector $\mathbf{x} = (1, 1, 1)^T$ to the vector $(1, 1, -1)^T$ (i.e., \mathbf{x} is reflected across the x_1-x_2 plane). Do not derive R for this special case - obtain an expression for R in terms of P for a general case.
Problem 2. Here, we will show that $A^T A$ is invertible if and only if $A x = 0$ has only the trivial solution. A need not be square.

1. Show that if there exists a vector x such that $A x = 0$, then $A^T A x = 0$.

2. Show that if there exists a vector y such that $A^T A y = 0$, then we must have $A y = 0$.

3. Explain why we may conclude from (a) and (b) that $N(A) = N(A^T A)$.

4. Use (c) to conclude that $A^T A$ is invertible if and only if $A x = 0$ has only the trivial solution.
Problem 3. From class, we claimed that the least squares solution \bar{x} to $A^T A \bar{x} = A^T b$ always exists, even when $A^T A$ is not invertible. That is, the column space of $A^T A$ is the same as the column space of A^T. Show that this is true. Hint: use the result from (3).
Problem 4. Suppose that the columns of an $m \times n$ matrix A form a basis for a certain subspace S, and that the columns of the $m \times n$ matrix B also form a (different) basis for the same subspace. Show that $A(A^T A)^{-1} A^T = B(B^T B)^{-1} B^T$. That is, show that the matrix that projects onto S is unique, independent of the choice of basis. Hint: think about how the matrices A and B must be related. You can find hints from Ch. 2 lecture notes.
Problem 5. Let A and its row-reduced echelon form be given by

$$A = \begin{pmatrix} 1 & 3 & 2 & -8 \\ 5 & 15 & 6 & -32 \\ -1 & -3 & 2 & 0 \\ 3 & 9 & 2 & -16 \end{pmatrix}, \quad A \sim \begin{pmatrix} 1 & 3 & 0 & -4 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Find the projection matrix P that projects vectors onto the column space of A. You may use Matlab to perform all your computations. Explain all your steps and give the Matlab commands that you type.
Problem 6. \(P \mathbf{x} \) is the closest vector in \(R(P) \) to the vector \(\mathbf{x} \). Here, \(P \) denotes the projection matrix that projects vectors onto \(R(P) \). We did so by showing that the square of the distance from \(P \mathbf{y} \) to \(\mathbf{x} \) is given by

\[
d^2 = \|P(\mathbf{y} - \mathbf{x})\|^2 + \|Q\mathbf{x}\|^2,
\]

where \(Q = I - P \) is the projection matrix that projects vectors onto \(R(P) \). We then claimed that \(\|P(\mathbf{y} - \mathbf{x})\|^2 \) is minimized when \(P(\mathbf{y} - \mathbf{x}) = \mathbf{0} \), and this occurs when \(\mathbf{y} = \mathbf{x} \). However, \(P \) is in general not invertible, and so has a nontrivial null space.

1. In terms \(Q \), write the set of all possible solutions \(\mathbf{y} \) to the system \(P(\mathbf{y} - \mathbf{x}) = \mathbf{0} \).

2. Is \(P \mathbf{x} \) still the only closest point in \(R(P) \) to \(\mathbf{x} \), or are there other points in \(R(P) \) that are equally close to \(\mathbf{x} \)? Explain your answer.
Problem 7. For a healthy child, the systolic blood pressure p (in millimeters of mercury) and weight (in pounds) are approximately related by the simple model

$$p = \beta_0 + \beta_1 \log w,$$

where $\log w$ denotes the natural logarithm of w. Here, β_0 and β_1 are constant parameters of the model to be found. You are given sample measurement data for w and p (on the course website). Save the data as a .mat file. Refer to the code from the Mar. 09 lecture for how to load the data in Matlab.

1. Use the least squares data fitting procedure to find values β_0 and β_1 that best fit the data. You do not need to turn in any Matlab code or any plots. However, to verify that you have the correct β_0 and β_1 values, it would be wise to plot the model from Eqn. (1) against the data.

2. Use the results of (a) to estimate the systolic blood pressure for a healthy child weighing 85 lbs.