Modular forms, Homework 3. Part 1. Due November 13.

1. Let $E_{1}(z)=\frac{1}{z}+\sum_{n=1}^{\infty}\left(\frac{1}{z+n}+\frac{1}{z-n}\right)$. Let $\gamma_{2 k}=2 \sum_{n=1}^{\infty} \frac{1}{n^{2 k}}$.

Without using the fact discussed in class that the series is related to the cotangent function, prove that:
(a) Prove that E_{1} satisfies the differential equation $E_{1}^{\prime}(z)=\left(-3 \gamma_{2}+E_{1}^{2}\right)$.
(b) Let $\theta=\sqrt{3 \gamma_{2}}$, and let $u(z)=\frac{1}{\theta} E_{1}(z / \theta)$. Then $u^{\prime}=-\left(1+u^{2}\right)$.
(c) Conclude that $E_{1}(z)=\theta \cot (\theta z)$, and that $\theta=\pi$, yielding the equality $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
2. Show the following identities for the sums of powers of divisors: for each n,
(a)

$$
\sigma_{7}(n)-\sigma_{3}(n)=120 \sum_{m=1}^{n-1} \sigma_{3}(m) \sigma_{3}(n-m)
$$

(b)

$$
11 \sigma_{9}(n)-21 \sigma_{5}(n)+10 \sigma_{3}(n)=5040 \sum_{m=1}^{n-1} \sigma_{3}(n) \sigma_{5}(n-m)
$$

3. Let $\mathbb{G}_{k}(z)$ be the re-normalized Eisenstein series so that

$$
\mathbb{G}_{k}(z)=-\frac{B_{2 k}}{4 k}+\sum_{n=1}^{\infty} \sigma_{2 k-1}(n) q^{n}
$$

where $B_{2 k}$ is the Bernoulli number.
(a) Prove that

$$
\mathbb{G}_{6}(z)=\Delta(z)+\frac{691}{156}\left(\frac{E_{2}(z)^{3}}{720}+\frac{E_{3}(z)^{3}}{1008}\right) .
$$

(b) Deduce the congruence of Ramanujan:

$$
\tau(n) \equiv \sigma_{11}(n) \quad \bmod 691
$$

Hint: 691 comes from the numerator of the constant term $-B_{12} / 24$ of \mathbb{G}_{6}.
4. Prove that the cross-ratio used to define the distance on \mathbb{H} (see p. 62 of Milne's notes) is real for any $z_{1}, z_{2} \in \mathbb{H}$.
Hint: You can use the fact that the cross-ratio is invariant under the Möbius transformations.

