## Modular forms, Homework 2 Part 2. Due October 23

1. Prove Theorem 3.8 in Milne.
2. Prove that Weierstrass $\wp$-function satisfies the differential equation:

$$
\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3} .
$$

3. In this problem we establish that an elliptic curve is an algebraic group with respect to addition, i.e. that the operation of addition is algebraic. Note that $\mathbb{C} / \Lambda$ is, naturally, a group with respect to addition.
(a) Prove Milne's Proposition 3.9:

$$
\wp\left(z+z^{\prime}\right)=\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}\left(z^{\prime}\right)}{\wp(z)-\wp\left(z^{\prime}\right)}\right)^{2}-\wp(z)-\wp\left(z^{\prime}\right) .
$$

(b) Prove that if $E$ is the elliptic curve with $E(\mathbb{C})=\mathbb{C} / \Lambda$ then the maps $E \times E \rightarrow$ $E,(x, y) \mapsto x+y$ and $E \rightarrow E, x \mapsto-x$ are algebraic.
4.* Inversion of an elliptic integral. As a warm-up, consider the stereographic projection for a circle: you can check (or believe - do not need to write it up) that with a suitable choice of coordinates it is given by $t \mapsto\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$ (think of it as a map from the line to the circle). What this formula does is: it provides a rational bijection between the set of solutions to the equation $x^{2}+y^{2}=1$ and the points of the projective line (note that $\left(\frac{t^{2}-1}{t^{2}+1}, \frac{2 t}{t^{2}+1}\right)$ is the affine representation of the point $\left(t^{2}-1: 2 t: t^{2}+1\right)$ ). Note that this bijection works over any field of characteristic not 2 (if you do it over $\mathbb{Q}$, you get Pythagorean triples; over a finite field it is useful for counting solutions to $x^{2}+y^{2}=1$, and over $\mathbb{C}$ it gives us yet another way to think of the Riemann sphere: namely, as a curve in $\mathbb{P}^{2}(\mathbb{C})$ defined by the equation $x^{2}+y^{2}=1$ ).
(a) Consider the Riemann sphere again, this time, think of it as above - as the curve in $\mathbb{P}^{2}(\mathbb{C})$ with the equation $z^{2}+w^{2}=1$. Let $z_{0}$ be some fixed point, and let $F(u)=\int_{z_{0}}^{u} \frac{1}{w} d z$. (Does the integral depend on the path?). Find the inverse function of $F(u)$.
Hint: this question is essentially trivial if you recall trig substitution. It actually explains why the trig substitution works: you parametrize the curve as $z=$ $\sin (u), w=\sin ^{\prime}(u)$. Note also that $\sin$ is a function with one period.
(b) Now consider an elliptic curve $w^{2}=z^{3}-a z-b$. Again consider the integral $F(u)=\int_{z_{0}}^{u} \frac{1}{w} d z$ - the integral is along a path on our curve. Observe that this integral is a multi-valued function (why?). However, it has a well-defined inverse: prove that its inverse is, in fact, a suitable Weierstrass $\wp$-function!

