Modular forms, Homework 2 Part 1. Due October 23.

1. (You do not have to write up this solution if you already know this calculation). The goal of this problem is it to compute the index $[\Gamma(1): \Gamma(N)]$. For a ring R, we denote by $\mathrm{GL}_{2}(R)$ the group

$$
\mathrm{GL}_{2}(R):=\left\{X \in M_{2}(R) \mid \operatorname{det}(X) \in R^{\times}\right\},
$$

where $M_{2}(R)$ is the set of 2×2 matrices with entries in R, and R^{\times}is the group of units of R. Hint: see Example 2.23 in Milne for hints.
(a) Let \mathbb{F}_{p} be the field of p elements. Prove that $\# \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)=\left(p^{2}-1\right)\left(p^{2}-p\right)$.
(b) Let $r \in \mathbb{N}$. Prove that $\# \mathrm{GL}_{2}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)=p^{4(r-1)}\left(p^{2}-1\right)\left(p^{2}-p\right)$.
(c) Suppose $N=\prod_{i} p_{i}^{r_{i}}$ is the prime factorization of N. Prove that $\mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z}) \simeq$ $\prod_{i} \mathrm{GL}_{2}\left(\mathbb{Z} / p_{i}^{r_{i}} \mathbb{Z}\right)$.
(d) Find $\# \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$.
(e) Prove that $\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})=\varphi(N)^{-1} \# \mathrm{GL}_{2}(\mathbb{Z} / N \mathbb{Z})$, where φ is Euler's φ function.
(f) Find $[\Gamma(1): \Gamma(N)]$.
(g) $[\bar{\Gamma}(1): \bar{\Gamma}(N)]$, where ${ }^{-}$denotes the quotient by $\{ \pm I\}$ if $-I$ is in the group. Consider the case $N=2$ separately.
2. Exercise 2.24 on p. 39 in Milne's notes.
3. Algebraic description of ramification:
(a) Consider a smooth curve on the affine plane, defined by the equation $f(x, y)=$ 0 , where f is a degree 2 polynomial. Consider the projection onto the x-axis. Prove that a point $\left(x_{0}, y_{0}\right)$ on the curve is a ramification point for this projection map iff $\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=0$.
(Hint: you can use implicit differentiation and consider it a calculus problem.)
(b) Recall that $\mathbb{C P}^{3}$ is the complex projective space, with homogeneous coordinates $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$, where $\left[z_{0}: z_{1}: z_{2}: z_{3}\right]$ stands for the equivalence class of triples $\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{4}$ with the usual equivalence $\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \sim$ $\left(\lambda z_{0}, \lambda z_{1}, \lambda z_{2}, \lambda z_{3}\right)$ with $\lambda \in \mathbb{C}^{\times}$(i.e. the space of lines through the origin in $\left.\mathbb{C}^{4}\right)$. Let X be a curve defined by a system of two polynomial equations in $\mathbb{C P}^{3}: p_{1}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=p_{2}\left(z_{0}, z_{1}, z_{2}, z_{3}\right)=0$, where p_{i} are homogeneous polynomials with complex coefficients. Consider a projective line L in $\mathbb{C P}^{3}$ given by $L_{1}=L_{2}=0$ where L_{1}, L_{2} are linear homogeneous polynomials. Prove that there is a (natural) projection from X onto L such that a point on X is a ramification point for this projection iff the following Jacobian determinant vanishes at that point:

$$
J:=\left|\begin{array}{lll}
\frac{\partial p_{1}}{\partial z_{0}} & \cdots & \frac{\partial p_{1}}{\partial z_{3}} \\
\frac{\partial p_{2}}{\partial z_{0}} & \cdots & \frac{p_{2}}{\partial z_{3}} \\
\frac{\partial L_{1}}{\partial z_{0}} & \cdots & \frac{\partial L_{1}}{\partial z_{3}} \\
\frac{\partial L_{2}}{\partial z_{0}} & \cdots & \frac{\partial L_{2}}{\partial z_{3}}
\end{array}\right|=0 .
$$

4.* Using Riemann-Hurwitz formula, prove that the intersection of two generic quadric surfaces in $\mathbb{C P}^{3}$ is an elliptic curve.

More precisely, A quadric surface is a surface defined by a degree 2 homogeneous polynomial in these coordinates:

$$
\begin{equation*}
\sum_{0 \leq i, j \leq 3} a_{i j} z_{i} z_{j}=0 \tag{1}
\end{equation*}
$$

where $a_{i j} \in \mathbb{C}$. By generic we mean a property that holds for almost all coefficients $\left(a_{i j}\right)$ (here the notion of 'almost all' means, the exceptions form a hypersurface, defined by some polynomial equations, in the space of all coefficients).

For this problem, an elliptic curve is a complex projective curve of genus 1. It is OK to work with complex manifolds (and Riemann surfaces) instead of the algebraic surfaces/curves. Thus the problem is asking the following: consider the curve in $\mathbb{C P}^{3}$ obtained as the intersection of two surfaces defined by equations of the form (1). It is OK to assume without proof that for two generic surfaces, you do get a Riemann surface (i.e. a smooth curve) as the intersection. Then you only need to prove that it has genus 1 .

Hint: use the previous problem. To count ramification points, you can use Bezout's theorem.

