Modular forms, Homework 2 Part 1. Due October 23.

1. (You do not have to write up this solution if you already know this calculation). The goal of this problem is it to compute the index $[\Gamma(1) : \Gamma(N)]$. For a ring R, we denote by $GL_2(R)$ the group

$$\operatorname{GL}_2(R) := \{ X \in M_2(R) | \det(X) \in R^{\times} \},\$$

where $M_2(R)$ is the set of 2×2 matrices with entries in R, and R^{\times} is the group of units of R. *Hint: see Example 2.23 in Milne for hints.*

- (a) Let \mathbb{F}_p be the field of p elements. Prove that $\# \operatorname{GL}_2(\mathbb{F}_p) = (p^2 1)(p^2 p)$.
- (b) Let $r \in \mathbb{N}$. Prove that $\#\operatorname{GL}_2(\mathbb{Z}/p^r\mathbb{Z}) = p^{4(r-1)}(p^2-1)(p^2-p)$.
- (c) Suppose $N = \prod_i p_i^{r_i}$ is the prime factorization of N. Prove that $\operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z}) \simeq \prod_i \operatorname{GL}_2(\mathbb{Z}/p_i^{r_i}\mathbb{Z})$.
- (d) Find $\# \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$.
- (e) Prove that $\# \operatorname{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \varphi(N)^{-1} \# \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, where φ is Euler's φ -function.
- (f) Find $[\Gamma(1) : \Gamma(N)]$.
- (g) $[\overline{\Gamma}(1) : \overline{\Gamma}(N)]$, where $\overline{\cdot}$ denotes the quotient by $\{\pm I\}$ if -I is in the group. Consider the case N = 2 separately.

2. Exercise 2.24 on p.39 in Milne's notes.

3. Algebraic description of ramification:

- (a) Consider a smooth curve on the affine plane, defined by the equation f(x, y) = 0, where f is a degree 2 polynomial. Consider the projection onto the x-axis. Prove that a point (x_0, y_0) on the curve is a ramification point for this projection map iff $\frac{\partial f}{\partial y}|_{(x_0, y_0)} = 0$.
- (Hint: you can use implicit differentiation and consider it a calculus problem.)
 (b) Recall that CP³ is the complex projective space, with homogeneous coordinates [z₀ : z₁ : z₂ : z₃], where [z₀ : z₁ : z₂ : z₃] stands for the equivalence class of triples (z₀, z₁, z₂, z₃) ∈ C⁴ with the usual equivalence (z₀, z₁, z₂, z₃) ~ (λz₀, λz₁, λz₂, λz₃) with λ ∈ C[×] (i.e. the space of lines through the origin in C⁴). Let X be a curve defined by a system of two polynomial equations in CP³: p₁(z₀, z₁, z₂, z₃) = p₂(z₀, z₁, z₂, z₃) = 0, where p_i are homogeneous polynomials with complex coefficients. Consider a projective line L in CP³ given by L₁ = L₂ = 0 where L₁, L₂ are linear homogeneous polynomials. Prove that there is a (natural) projection from X onto L such that a point on X is a ramification point for this projection iff the following Jacobian determinant vanishes at that point:

$$J := \begin{vmatrix} \frac{\partial p_1}{\partial z_0} & \cdots & \frac{\partial p_1}{\partial z_3} \\ \frac{\partial p_2}{\partial z_0} & \cdots & \frac{\partial p_2}{\partial z_3} \\ \frac{\partial L_1}{\partial z_0} & \cdots & \frac{\partial L_2}{\partial z_3} \\ \frac{\partial L_2}{\partial z_0} & \cdots & \frac{\partial L_2}{\partial z_3} \end{vmatrix} = 0$$

4.* Using Riemann-Hurwitz formula, prove that the intersection of two generic quadric surfaces in \mathbb{CP}^3 is an elliptic curve.

More precisely, A *quadric surface* is a surface defined by a degree 2 homogeneous polynomial in these coordinates:

(1)
$$\sum_{0 \le i,j \le 3} a_{ij} z_i z_j = 0,$$

where $a_{ij} \in \mathbb{C}$. By generic we mean a property that holds for almost all coefficients (a_{ij}) (here the notion of 'almost all' means, the exceptions form a hypersurface, defined by some polynomial equations, in the space of all coefficients).

For this problem, an *elliptic curve* is a complex projective curve of genus 1. It is OK to work with complex manifolds (and Riemann surfaces) instead of the algebraic surfaces/curves. Thus the problem is asking the following: consider the curve in \mathbb{CP}^3 obtained as the intersection of two surfaces defined by equations of the form (1). It is OK to assume without proof that for two generic surfaces, you do get a Riemann surface (i.e. a smooth curve) as the intersection. Then you only need to prove that it has genus 1.

Hint: use the previous problem. To count ramification points, you can use Bezout's theorem.