1. *(You do not have to write up this solution if you already know this calculation).*

The goal of this problem is to compute the index \(\Gamma(1) : \Gamma(N) \). For a ring \(R \), we denote by \(\text{GL}_2(R) \) the group

\[
\text{GL}_2(R) := \{ X \in M_2(R) \mid \det(X) \in R^\times \},
\]

where \(M_2(R) \) is the set of \(2 \times 2 \) matrices with entries in \(R \), and \(R^\times \) is the group of units of \(R \). *Hint: see Example 2.23 in Milne for hints.*

(a) Let \(\mathbb{F}_p \) be the field of \(p \) elements. Prove that \(\# \text{GL}_2(\mathbb{F}_p) = (p^2 - 1)(p^2 - p) \).

(b) Let \(r \in \mathbb{N} \). Prove that \(\# \text{GL}_2(\mathbb{Z}/p^r\mathbb{Z}) = p^{4(r-1)}(p^2 - 1)(p^2 - p) \).

(c) Suppose \(N = \prod_i p_i^{r_i} \) is the prime factorization of \(N \). Prove that \(\text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \simeq \prod_i \text{GL}_2(\mathbb{Z}/p_i^{r_i}\mathbb{Z}) \).

(d) Find \(\# \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \).

(e) Prove that \(\# \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) = \varphi(N)^{-1} \# \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \), where \(\varphi \) is Euler’s \(\varphi \)-function.

(f) Find \(\# \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \).

(g) \(\Gamma(1) : \Gamma(N) \), where \(\sim \) denotes the quotient by \(\{ \pm I \} \) if \(-I \) is in the group. Consider the case \(N = 2 \) separately.

2. Exercise 2.24 on p.39 in Milne’s notes.

3. Algebraic description of ramification:

(a) Consider a smooth curve on the affine plane, defined by the equation \(f(x, y) = 0 \), where \(f \) is a degree 2 polynomial. Consider the projection onto the \(x \)-axis. Prove that a point \((x_0, y_0) \) on the curve is a ramification point for this projection map iff \(\frac{\partial f}{\partial y}(x_0, y_0) = 0 \).

(Hint: you can use implicit differentiation and consider it a calculus problem.)

(b) Recall that \(\mathbb{C}P^3 \) is the complex projective space, with homogeneous coordinates \([z_0 : z_1 : z_2 : z_3]\), where \([z_0 : z_1 : z_2 : z_3]\) stands for the equivalence class of triples \((z_0, z_1, z_2, z_3) \in \mathbb{C}^4 \) with the usual equivalence \((z_0, z_1, z_2, z_3) \sim (\lambda z_0, \lambda z_1, \lambda z_2, \lambda z_3) \) with \(\lambda \in \mathbb{C}^\times \) (i.e. the space of lines through the origin in \(\mathbb{C}^4 \)). Let \(X \) be a curve defined by a system of two polynomial equations in \(\mathbb{C}P^3 \), \(p_1(z_0, z_1, z_2, z_3) = p_2(z_0, z_1, z_2, z_3) = 0 \), where \(p_i \) are homogeneous polynomials with complex coefficients. Consider a projective line \(L \) in \(\mathbb{C}P^3 \) given by \(L_1 = L_2 = 0 \) where \(L_1, L_2 \) are linear homogeneous polynomials. Prove that a point on \(X \) is a ramification point for a projection from \(X \) onto \(L \) iff the following Jacobian determinant vanishes at that point:

\[
J := \begin{vmatrix}
\frac{\partial p_1}{\partial z_0} & \frac{\partial p_1}{\partial z_3} \\
\frac{\partial p_2}{\partial z_0} & \frac{\partial p_2}{\partial z_3}
\end{vmatrix} = 0.
\]

3. Using Riemann-Hurwitz formula, prove that the intersection of two generic quadric surfaces in \(\mathbb{C}P^3 \) is an elliptic curve.

More precisely, A *quadric surface* is a surface defined by a degree 2 homogeneous polynomial in these coordinates:

\[
\sum_{0 \leq i, j \leq 3} a_{ij} z_i z_j = 0,
\]
where $a_{ij} \in \mathbb{C}$. By *generic* we mean a property that holds for *almost all* coefficients (a_{ij}) (here the notion of ‘almost all’ means, the exceptions form a hypersurface, defined by some polynomial equations, in the space of all coefficients).

For this problem, an *elliptic curve* is a complex projective curve of genus 1. It is OK to work with complex manifolds (and Riemann surfaces) instead of the algebraic surfaces/curves. Thus the problem is asking the following: consider the curve in \mathbb{CP}^3 obtained as the intersection of two surfaces defined by equations of the form (1). It is OK to assume without proof that for two generic surfaces, you do get a Riemann surface (i.e. a smooth curve) as the intersection. Then you only need to prove that it has genus 1.

Hint: use the previous problem. To count ramification points, you can use Bezout’s theorem.