
1. Fourier transform: a reminder

1.1. Functions on the unit circle. For f ∈ L2(S1),

f̂(n) =

∫
S1

f(z)e−2πinz dz

• converges for f ∈ L2(S1)
• The image is a function in L2(Z).
• It is onto.
• Plancherel formula: ‖f‖2 = c

∑
n∈Z |f̂(n)|2. (c is a normalization constant;

with my choice of measures, 1/2π?).
• The characters of S1 (i.e., the functions e2πinz) form an orthonormal basis

in L2(S1).

1.2. Functions on R. Define Fourier transform by:

f̂(ξ) =

∫
R
f(x)e−2πiξx dx.

• When is this guaranteed to converge? When f ∈ L1(R) (Riemann-Lebesgue
lemma).
• What kind of function of ξ do we get? It is continuous and goes to 0 at ∞,

but doesn’t have to be in L1.
• The Schwartz space S, which is contained in L2(R) ∩ L1(R), is taken to

itself by Fourier transform.
• What about L2? The space S is dense in L2; it turns out that Fourier

transform is continous with respect to the L2-norm, and therefore, S being
dense in L2, one can define the Fourer transform for L2-functions.

• Plancherel formula:

‖f‖2 = c‖f̂‖2.
Note: this is equivalent to Parceval’s formula: 〈f, g〉 = c〈f̂ , ĝ〉.

• Tempered distributions form the dual space to S. Get Fourier transform
on tempered distribtutions.

• Why we care for distributions: the characters of R, that is, the functions
e2πix, would have formed an orthonormal basis of L2(R̂), if only they were
in that space. Instead, they are in the space of tempered distributions.

1.3. Abelian topological groups. We note that if G is finite, the space of func-
tions on G is C[G] = C(G) = L1(G) = L2(G).

The Pontryagin dual of G is the group of unitary characters of G: Ĝ = {χ : G→
S1 – a continuous group homomorphism}; note that that when G is finite, or more
generally, compact, the (continuous) characters χ : G → C× are automatically

unitary. Fourier transform is a map from functions on G to functions on Ĝ defined
by:

f̂(χ) =

∫
G

f(g)χ(g) dg,

where dg is an Haar measure onG (the integral is just a sum overG whenG is finite).
Note that this is L2-inner product of f and χ, so when G is infinite, it makes sense
for f ∈ L2(G). The two above examples are special cases of this Fourier transform.
Indeed, for the example of the functions on the circle, i.e. periodic functions on

the interval, we use that Ŝ1 ' Z (the characters are z 7→ zn, and we recognize
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the Fourier coefficients of periodic functions, mentioned above, by identifying the
interval [0, 1) with S1 via x 7→ e2πix). For the functions on the real line, we use the

fact that R̂ ' R via y 7→ χy = (x 7→ e2πixy). Note that this isomorphism can be
thought of as follows: pick one character of R, say, ψ(x) = e2πix. Now, χy = ψ(xy)
for y ∈ R. This identification of the group with its Pontryagin dual works for the
additive group of any local field.

1.4. Mellin transform. Mellin transform is defined for a function f : R>0 → R
by:

g(s) =

∫ ∞
0

f(x)xs
dx

x
.

Note that if we relax the requirement for the character to be unitary, namely,
consider the homomorphisms from the multiplicative group of positive reals R>0 to
C×, then the group of such homomorphisms is C: they are all of the form x 7→ xs,
s ∈ C. Since dx/x is an invariant measure on R>0 (with respect to the multiplicative
group structure), Mellin transform can be thought of as Fourier transform for this
group.

1.5. An exercise on Dirichlet characters: Gauss sums. Let p be a prime,
and let χ : (Z/pZ)× → S1 be a nontrivial character of the multiplicative group
(Z/pZ)×. We can extend χ to a function on Z/pZ by letting χ(0) = 0. Recall that
the group Z/pZ is self-dual (i.e, its group of characters is isomorphic to itself via
a 7→ χa = (x 7→ ψ(ax)), where ψ is some chosen non-trivial character). Consider
the Fourier transform of the function χ on Z/pZ (note that we started with a
character of the multiplicative group to get this function, but the Fourier transform
is happenning on the additive group Z/pZ). The Fourier transform χ̂ : Z/pZ→ C
is:

χ̂(x) =
∑

y∈Z/pZ

χ(y)e−2πixy/p =
∑

y∈(Z/pZ)×
χ(y)e−2πixy/p.

Let
G(χ) =

∑
y∈(Z/pZ)×

χ(y)e2πiy/p.

The sum G(χ) is called a Gauss sum.

(1) Prove that χ̂(x) = χ(−1)G(χ)χ(x).

(2) Prove that G(χ) = χ(−1)G(χ).
(3) Prove that |G(χ)| =

√
p (note that this implies that there are a lot of

cancellations in the sum: a naive estimate of its magnitude would be
|G(χ)| ≤ p− 1, since it’s a sum of p− 1 roots of unity).


