1. Fourier transform: a REminder

1.1. Functions on the unit circle. For $f \in L^{2}\left(S^{1}\right)$,

$$
\hat{f}(n)=\int_{S^{1}} f(z) e^{-2 \pi i n z} d z
$$

- converges for $f \in L^{2}\left(S^{1}\right)$
- The image is a function in $L^{2}(\mathbb{Z})$.
- It is onto.
- Plancherel formula: $\|f\|^{2}=c \sum_{n \in \mathbb{Z}}|\hat{f}(n)|^{2}$. (c is a normalization constant; with my choice of measures, $1 / 2 \pi$?).
- The characters of S^{1} (i.e., the functions $e^{2 \pi i n z}$) form an orthonormal basis in $L^{2}\left(S^{1}\right)$.
1.2. Functions on \mathbb{R}. Define Fourier transform by:

$$
\hat{f}(\xi)=\int_{\mathbb{R}} f(x) e^{-2 \pi i \xi x} d x
$$

- When is this guaranteed to converge? When $f \in L^{1}(\mathbb{R})$ (Riemann-Lebesgue lemma).
- What kind of function of ξ do we get? It is continuous and goes to 0 at ∞, but doesn't have to be in L^{1}.
- The Schwartz space \mathcal{S}, which is contained in $L^{2}(\mathbb{R}) \cap L^{1}(\mathbb{R})$, is taken to itself by Fourier transform.
- What about L^{2} ? The space \mathcal{S} is dense in L^{2}; it turns out that Fourier transform is continous with respect to the L^{2}-norm, and therefore, \mathcal{S} being dense in L^{2}, one can define the Fourer transform for L^{2}-functions.
- Plancherel formula:

$$
\|f\|^{2}=c\|\hat{f}\|^{2}
$$

Note: this is equivalent to Parceval's formula: $\langle f, g\rangle=c\langle\hat{f}, \hat{g}\rangle$.

- Tempered distributions form the dual space to \mathcal{S}. Get Fourier transform on tempered distribtutions.
- Why we care for distributions: the characters of \mathbb{R}, that is, the functions $e^{2 \pi i x}$, would have formed an orthonormal basis of $L^{2}(\hat{\mathbb{R}})$, if only they were in that space. Instead, they are in the space of tempered distributions.
1.3. Abelian topological groups. We note that if G is finite, the space of functions on G is $\mathbb{C}[G]=C(G)=L^{1}(G)=L^{2}(G)$.

The Pontryagin dual of G is the group of unitary characters of $G: \hat{G}=\{\chi: G \rightarrow$ S^{1} - a continuous group homomorphism $\}$; note that that when G is finite, or more generally, compact, the (continuous) characters $\chi: G \rightarrow C^{\times}$are automatically unitary. Fourier transform is a map from functions on G to functions on \hat{G} defined by:

$$
\hat{f}(\chi)=\int_{G} f(g) \overline{\chi(g)} d g
$$

where $d g$ is an Haar measure on G (the integral is just a sum over G when G is finite). Note that this is L^{2}-inner product of f and χ, so when G is infinite, it makes sense for $f \in L^{2}(G)$. The two above examples are special cases of this Fourier transform. Indeed, for the example of the functions on the circle, i.e. periodic functions on the interval, we use that $\hat{S^{1}} \simeq \mathbb{Z}$ (the characters are $z \mapsto z^{n}$, and we recognize
the Fourier coefficients of periodic functions, mentioned above, by identifying the interval $[0,1)$ with S^{1} via $\left.x \mapsto e^{2 \pi i x}\right)$. For the functions on the real line, we use the fact that $\hat{R} \simeq \mathbb{R}$ via $y \mapsto \chi_{y}=\left(x \mapsto e^{2 \pi i x y}\right)$. Note that this isomorphism can be thought of as follows: pick one character of \mathbb{R}, say, $\psi(x)=e^{2 \pi i x}$. Now, $\chi_{y}=\psi(x y)$ for $y \in \mathbb{R}$. This identification of the group with its Pontryagin dual works for the additive group of any local field.
1.4. Mellin transform. Mellin transform is defined for a function $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}$ by:

$$
g(s)=\int_{0}^{\infty} f(x) x^{s} \frac{d x}{x}
$$

Note that if we relax the requirement for the character to be unitary, namely, consider the homomorphisms from the multiplicative group of positive reals $\mathbb{R}_{>0}$ to \mathbb{C}^{\times}, then the group of such homomorphisms is \mathbb{C} : they are all of the form $x \mapsto x^{s}$, $s \in \mathbb{C}$. Since $d x / x$ is an invariant measure on $\mathbb{R}_{>0}$ (with respect to the multiplicative group structure), Mellin transform can be thought of as Fourier transform for this group.
1.5. An exercise on Dirichlet characters: Gauss sums. Let p be a prime, and let $\chi:(\mathbb{Z} / p \mathbb{Z})^{\times} \rightarrow S^{1}$ be a nontrivial character of the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{\times}$. We can extend χ to a function on $\mathbb{Z} / p \mathbb{Z}$ by letting $\chi(0)=0$. Recall that the group $\mathbb{Z} / p \mathbb{Z}$ is self-dual (i.e, its group of characters is isomorphic to itself via $a \mapsto \chi_{a}=(x \mapsto \psi(a x))$, where ψ is some chosen non-trivial character). Consider the Fourier transform of the function χ on $\mathbb{Z} / p \mathbb{Z}$ (note that we started with a character of the multiplicative group to get this function, but the Fourier transform is happenning on the additive group $\mathbb{Z} / p \mathbb{Z})$. The Fourier transform $\widehat{\chi}: \mathbb{Z} / p \mathbb{Z} \rightarrow \mathbb{C}$ is:

$$
\widehat{\chi}(x)=\sum_{y \in \mathbb{Z} / p \mathbb{Z}} \chi(y) e^{-2 \pi i x y / p}=\sum_{y \in(\mathbb{Z} / p \mathbb{Z})^{\times}} \chi(y) e^{-2 \pi i x y / p} .
$$

Let

$$
G(\chi)=\sum_{y \in(\mathbb{Z} / p \mathbb{Z})^{\times}} \chi(y) e^{2 \pi i y / p}
$$

The sum $G(\chi)$ is called a Gauss sum.
(1) Prove that $\widehat{\chi}(x)=\chi(-1) G(\chi) \bar{\chi}(x)$.
(2) Prove that $\overline{G(\chi)}=\chi(-1) G(\bar{\chi})$.
(3) Prove that $|G(\chi)|=\sqrt{p}$ (note that this implies that there are a lot of cancellations in the sum: a naive estimate of its magnitude would be $|G(\chi)| \leq p-1$, since it's a sum of $p-1$ roots of unity).

