A supplement on Dirichlet series

Treat this as optional homework - these are all classical facts, just stated as problems. Please think about them; no need to hand in solutions. You can read all the solutions in the "Dirichlet series" chapter of Titchmarsh's textbook (posted).

A Dirichlet series is a series of the form $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$, where a_{n} and s are complex numbers.
(1) Convergence:
(a) Prove that if $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges absolutely for $s=s_{0} \in \mathbb{R}$, then it converges absolutely for all $s \in \mathbb{C}$ with $\Re s>s_{0}$; moreover such convergence is uniform on compact sets contained in the half-plane $\Re s>s_{0}$. Hence, in the half-plane $\Re s>s_{0}$ it converges to a holomorphic function.
(b) Prove that if $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges for $s=s_{0} \in \mathbb{R}$, then it converges for all $s \in \mathbb{C}$ with $\Re s>s_{0}$.
(c) Prove that if $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges for $s=s_{0} \in \mathbb{R}$, then it converges absolutely for all $s \in \mathbb{C}$ with $\Re s>s_{0}+1$.
(d) Observe that the above statements imply that a Dirichlet series (that converges at least somewhere) has abscissa of convergence (i.e. the smallest σ_{0} such that it converges for $\Re s>\sigma_{0}$), and abscissa of absolute convergence σ^{*} (denoted by $\bar{\sigma}$ in Titchmarsh), and that $\sigma^{*} \leq \sigma_{0}+1$. Now, prove that the abscissa of absolute convergence is given by:

$$
\sigma^{*}=\limsup _{n \rightarrow \infty} \frac{\log \left(\left|a_{1}\right|+\cdots+\left|a_{n}\right|\right)}{\log n}
$$

(2) (a) Prove that is a function holomorphic in a half-plane $\Re s>0$ is represented by a Dirichlet series in this half-plane, then this series is unique: if $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}$ in some half-plane, then $a_{n}=b_{n}$ for all n.
(b) Prove that any function represented by a convergent Dirichlet series has a zero-free half-plane.
(3) Prove that if the coefficients are square summable, i.e., $\sum\left|a_{n}\right|^{2}<\infty$, then the series $\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ converges for $\Re s>1 / 2$. (Hint: use Cauchy-Schwarz inequality).
(4) Growth:
(a) The function $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ is bounded in any half-plane strictly contained in the half-plane of absolute convergence.
(b) If σ_{0} is the abscissa of convergence for $f(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$, and σ^{*} is the abscissa of absolute convergence, then $f(s)=O\left(|t|^{1-\left(\sigma-\sigma_{0}\right)+\epsilon}\right)$ as $t:=\Im(s) \rightarrow \infty$, for any value of $\sigma:=\Re s$ between σ_{0} and σ^{*}.
(5) Suppose the coefficients are multiplicative: $a_{m n}=a_{m} a_{n}$ for all $m, n \geq 1$. Prove that the series then has an Euler product:

$$
\sum_{n=1}^{\infty} a_{n} n^{-s}=\prod_{p}\left(1-a_{p} p^{-s}\right)^{-1}
$$

