Please do not hand in. We can discuss these problems in class if needed.

V will always denote a complex vector space, and $I : V \to V$ – the identity map.
If we say $A : V \to V$, we always mean a linear operator on V. Let V, W be two
vector spaces. We denote by $\text{Hom}(V, W)$ the vector space of all linear operators
from V to W.

1. JORDAN CANONICAL FORM, AND MISCELLANEOUS PROBLEMS

(1) Let $A : V \to V$ be a linear map. Assume that $A^n = I$ for some n. Show
that V has a basis of eigenvectors for A (that is, the matrix of A can be
diagonalized).

(2) * Let A_s be the diagonal part of the canonical Jordan form of A, and let
$A_n = A - A_s$. Prove that there exist polynomials P and Q, such that
$A_s = P(A)$, $A_n = Q(A)$.

(3) Commuting linear operators.
(a) Suppose $A, B : V \to V$ are diagonalizable linear operators (i.e. each
of them has a basis of eigenvectors). Show that there exists a common
basis of eigenvectors for A and B.
(b) Suppose a linear operator A has distinct eigenvalues, and suppose
$AB = BA$. Prove that there exists a polynomial P, such that $B =
P(A)$. Is this assertion true if we do not assume that the eigenvalues
of A are distinct?
(c) In general, let $V_\lambda = \cup_m \text{ker}(A - \lambda I)^m$ (call it the generalized eigenspace
of A), and suppose $B : V \to V$ commutes with A. Show that the
generalized eigenspaces of A are B-invariant.

(4) Projectors.
(a) Let $p : V \to V$ be a linear operator satisfying $p^2 = p$ (such operators
are called projectors). Show that there is a direct sum decomposition
$V = \text{ker}(p) \oplus \text{Im}(p)$. (Thus, you can think of p as a projection onto its
image along its kernel).
(b) Let W be a linear subspace of V. Show that there is a one-to-one cor-
respondence between projectors p with $\text{Im}(p) = W$, and direct com-
plements of W.
(c) Suppose $A : V \to V$ commutes with p. Show that $\text{ker}(p)$ and $\text{Im}(p)$
are A-invariant subspaces.

2. DUAL VECTOR SPACES AND BILINEAR FORMS

Let V^* denote the linear dual of V, i.e., the space of linear functionals
on V.

(5) (a) Let $\{e_1, \ldots, e_n\}$ be a basis of V. Prove that there exists a basis
$\{e_1^*, \ldots, e_n^*\}$ of V^* with the property $e_i^*(e_j) = \delta_{ij}$. Such a basis is
called the dual basis to $\{e_1, \ldots, e_n\}$.
(b) Let \(\{e_1, \ldots, e_n\} \) and \(\{e_1^*, \ldots, e_n^*\} \) be dual bases of \(V \) and \(V^* \), respectively. Suppose that \(A : V \to V \) is a linear operator with the matrix \(M = (a_{ij}) \) with respect to the basis \(\{e_1, \ldots, e_n\} \). Let \(A^* : V^* \to V^* \) be the dual linear operator, defined by the property:
\[
A^*(w)(v) = w(Av), \quad \forall w \in W, v \in V.
\]
Show that the matrix of \(A^* \) with respect to the basis \(\{e_1^*, \ldots, e_n^*\} \) is \((a_{ji}) = M^T \).

(6) Prove that for any matrix \(A \), the rank of \(A \) equals the rank of \(A^T \).

(7) A sequence of linear maps \(V \xrightarrow{A} W \xrightarrow{B} U \) is called exact (in the middle term) if \(\ker(B) = \operatorname{Im}(A) \). A longer sequence is called exact if it is exact in every term.

Prove that the sequence \(0 \to V \xrightarrow{A} W \xrightarrow{B} U \to 0 \) is exact if and only if the dual sequence \(0 \to U^* \xrightarrow{B^*} W^* \xrightarrow{A^*} V^* \to 0 \) is exact.

(8) Let \(B : V \times V \to C \) be a linear functional (such linear functionals are called bilinear forms on \(V \)). Find the condition on \(B \) that guarantees that the map \(w \mapsto (v \mapsto B(v, w)) \) is an isomorphism from \(V \) to \(V^* \). (Note that there is no canonical isomorphism from \(V \) to \(V^* \), but any nice enough bilinear form can be used to make such an isomorphism).

(9) Prove that \(\operatorname{Hom}(V, W) \cong \operatorname{Hom}(W^*, V^*) \).

(10) Show that there is a canonical isomorphism \(V^{**} \to V \).

3. Tensor products

(11) Let \(f : V \times W \to V \otimes W \) be the canonical map: \(f(v, w) = v \otimes w \). Prove that it is universal in the following sense:

for any vector space \(U \), and any bilinear map \(B : V \times W \to U \), there exists a unique linear operator \(C : V \otimes W \to U \) such that \(B = C \circ f \).

This is called the universal property of the tensor product. It is not hard to prove that any two objects satisfying such a universal property have to be isomorphic, and thus one can use the universal property as the definition of the tensor product.

(12) Prove that \(V^* \otimes W \) is canonically isomorphic to \(\operatorname{Hom}(V, W) \). (Hint: use the universal property of the tensor product).

(13) (a) Let \(A : V_1 \to V_2 \) be a linear map of vector spaces. Let \(W \) be an arbitrary vector space. Then we can construct the linear map
\[
A \otimes I : V_1 \otimes W \to V_2 \otimes W,
\]
where \(I : W \to W \) is the identity map. Prove that if \(A : V_1 \to V_2 \), \(B : V_2 \to V_3 \) are linear operators, then \((B \circ A) \otimes I = (B \otimes I) \circ (A \otimes I)\).

(Note: this property tells us that “tensoring with \(W \)” is a functor from the category of vector spaces over \(\mathbb{C} \) to itself.)
(b) Suppose \(0 \to V_1 \xrightarrow{A} V_2 \xrightarrow{B} V_3 \to 0 \) is an exact sequence of linear maps of vector spaces, and let \(W \) be an arbitrary vector space. Prove that the sequence
\[
0 \to V_1 \otimes W \xrightarrow{A \otimes I} V_2 \otimes W \xrightarrow{B \otimes I} V_3 \otimes W \to 0
\]
is exact as well. (In the language of functors and categories, this says that "the tensor multiplication functor is exact". Note that this is true for vector spaces over a field, but \textit{not} for modules over a ring).

4. Symmetric and exterior powers

For the definitions of higher symmetric and exterior powers, please see, for example, Sections 5 and 6 in Kostrikin and Manin "Linear Algebra and geometry" (there is full text online available through the library).

(14) Prove that \(\text{Alt}^2 V \cong \land^2 V \).

(15) Prove that
\[
\text{Sym}^m(V \oplus W) = \bigoplus_{a=0}^{m} \text{Sym}^a V \otimes \text{Sym}^{m-a} W;
\]
\[
\land^m(V \oplus W) = \bigoplus_{a=0}^{m} \land^a V \otimes \land^{m-a} W.
\]

(16) Let \(V \) be an \(n \)-dimensional vector space, and \(A : V \to V \) – a linear map. Then \(\land^n V \) is a 1-dimensional vector space, and thus \(\land^n A : \land^n V \to \land^n V \) is multiplication by scalar. Prove that this scalar equals \(\det(A) \).