Math 534. Written problems, set 4. Due December 13.
(1) Let V be the standard (3-dimensional) representation of $\mathfrak{s l}_{3}(\mathbb{C})$.
(a) Draw the weight diagram of V.
(b) Draw the weight diagram for $\operatorname{Sym}^{2} V$ (with multiplicities).
(c) Prove that the representation $\operatorname{Sym}^{n} V$ is irreducible for all n.
(2) This problem is about representations of $\mathfrak{s p}_{4}(\mathbb{C})$.
(a) Draw the root lattice and the weight lattice for C_{2} on the same diagram.
(b) Draw the weight diagram for the irreducible representation (call it W) of $\mathfrak{s p}_{4}(\mathbb{C})$ with highest weight $\alpha+\beta$ (where $\{\alpha, \beta\}$ is the standard base for C_{2}).
(c) Let V be the standard (4-dimensional) representation of $\mathfrak{s p}_{4}$. Show that the alternating square $\wedge^{2} V$ is the direct sum of W from part (b), and the trivial representation.
(d) Show that $\mathrm{Sym}^{2} V$ is isomorphic to the adjoint representation.

