
1. Find an example of an irreducible algebraic group such that the set of its real points is not connected.

2. Prove that there are no nontrivial homomorphisms from a quasitorus to the additive group G_a (G_a is the notation for the algebraic group s.t. $G_a(K) = K$).

3. Show that the maps exp and log between the groups of nilpotent (respectively, unipotent) operators are morphisms that are inverses of each other. (Hint: work with the formal power series).

4. Let G be an algebraic group, let $g \in G(\mathbb{C})$. Show that if g^m is semisimple for some positive integer m, then g is semisimple.

5. Show that the intersection of the kernels of all characters of an algebraic group G is a normal algebraic subgroup, and the quotient of G by this subgroup is a quasitorus.

6. Let T_1, T_2 be algebraic tori. Then there is one-to-one correspondence between $\text{Hom}(T_1, T_2)$ and $\text{Hom}(X(T_2), X(T_1))$.

7. Show that any subgroup of an irreducible solvable algebraic group G that consists only of semisimple elements has to be commutative. In particular, any finite subgroup of such G is commutative.