
(1) [5] Find the centre of the ring of real quaternions \mathbb{H}.

Answer: $\mathbb{R} = \{a + 0i + 0j + 0k \mid a \in \mathbb{R}\}$. It is clear that all real elements commute with everything. To prove that no other elements are in the centre, consider $x = a + bi + cj + dk$. Since $xi = ix$, we get (by definition of the multiplication in \mathbb{H})

$$ai - b - ck - dj = ai - b + cj + dk,$$

so $c = d = 0$. Similarly, since x commutes with j, we get $b = 0$.

(2) [5] Let R be a commutative ring with 1. Prove that if there exists a prime ideal P of R that contains no zero divisors, then R is an integral domain.

Solution: Suppose R had zero divisors, say $ab = 0$ with $a, b \neq 0$. Then consider R/P. We should have $\overline{a}\overline{b} = \overline{0}$ in R/P, but since P is prime, R/P is an integral domain, and thus \overline{a} or $\overline{b} = 0$, which implies a or b is contained in P – a contradiction with the assumption that P contains no zero divisors.

(3) Let R be a commutative ring with 1, and I, J – ideals in R.

(a) [2] Give a sufficient condition for the equality $IJ = I \cap J$ to hold (just a statement, no proof required).

Answer: I and J are comaximal.

(b) [3] Give an example of two ideals I and J in a commutative ring R, such that $IJ \neq I \cap J$.

Example: $R = \mathbb{Z}$, $I = J = 2\mathbb{Z}$.

(c) [6] Prove that if R is a UFD, and $I = (a)$, $J = (b)$ are two principal ideals, then $IJ = I \cap J$ if and only if a and b have no common irreducible factors.

Proof: Suppose $IJ = I \cap J$. Let us prove that then a and b have no common factors. Suppose they had a common irreducible factor r, say $a = ra'$, $b = rb'$. Then the element $ra'b'$ would be in $I \cap J$ but not in IJ.

Conversely, suppose a and b have no common factors. Then we want to show that $I \cap J \subseteq IJ$ (the reverse inclusion always holds). Let $x \in I \cap J$. Then $x = ax' = by'$ for some $x', y' \in R$. Since R is a UFD and a and b have no common factors, x' has to be divisible by all the irreducible factors of b, and y' has to be divisible by all the irreducible factors of a. But then x' is divisible by b, and so $x = ax' = abx''$ for some x'', i.e., $x \in IJ$.

(4) [5] Is 7 prime in $\mathbb{Z}[\frac{1 + \sqrt{-3}}{2}]$? If not, factor it as a product of primes, with proof that the factors are prime.

Solution: The ring $\mathbb{Z}[\frac{1 + \sqrt{-3}}{2}]$ is Euclidean, and hence for its elements prime is equivalent to irreducible. The element 7 is not irreducible: $7 = (2 + \sqrt{-3})(2 - \sqrt{-3}) = 4 + 3$, hence it is not prime. The norm of each of the elements $2 \pm \sqrt{-3}$ is $|2 + \sqrt{-3}|^2 = 7$, which is a prime in \mathbb{Z}. Hence, these elements are irreducible (their norms cannot be factored, hence they cannot be factored). Then this is a factorization into prime factors.
(5) [5] Find an example of an element of $\mathbb{Z}[\sqrt{-3}]$ that is irreducible but not prime (and give a complete proof that it has this property).

Answer: For example, 2. It is irreducible because its norm is 4, and so if it factors, it factors as a product of elements of norm 2, but an element of $\mathbb{Z}[\sqrt{-3}]$ cannot have norm 2. On the other hand, it is not prime, since $(1 + \sqrt{-3})(1 - \sqrt{-3}) = 4 \in (2)$, but neither element $1 \pm \sqrt{-3}$ lies in the ideal (2).

(6) [6] Let F be a field that has infinite cardinality. Let n be an arbitrary integer. Prove that for any collection of distinct elements $a_1, \ldots, a_n \in F$, and any collection of values $c_1, \ldots, c_n \in F$ there exists unique polynomial $f \in F[x]$ of degree at most $n - 1$ such that $f(a_i) = c_i$ for $1 \leq i \leq n$.

Solution sketch: This is known as Lagrange interpolation; but here we obtain it as an easy corollary of Chinese Remainder Theorem. Consider the ideals $(x - a_i)$ in $F[x]$. These are pairwise comaximal. Note that the condition $f(a_i) = c_i$ is equivalent to $f \equiv c_i \mod (x - a_i)$. This pretty much completes the proof: use Chinese Remainder Theorem for this collection of ideals. Note that the least common multiple of $(x - a_i)$ is their product, which is a polynomial of degree n.

(7) Describe the quotient ring (i.e. find a simpler-looking ring isomorphic to it). Is the ideal $(x^2 + 1)$ maximal in either of these rings?

(a) $[4] \mathbb{F}_5[x]/(x^2 + 1)$

Solution: Note that $x^2 + 1 = (x - 2)(x + 2)$ in $\mathbb{F}_5[x]$; hence, by Chinese Remainder Theorem,

$$\mathbb{F}_5[x]/(x^2 + 1) \cong \mathbb{F}_5[x]/(x - 2) \times \mathbb{F}_5[x]/(x + 2) \cong \mathbb{F}_5 \times \mathbb{F}_5.$$

The ideal is not maximal, since the quotient is not a field.

(b) $[4] \mathbb{F}_7[x]/(x^2 + 1)$. Here the polynomial $x^2 + 1$ is irreducible, and hence generates a maximal ideal (remember that $\mathbb{F}_7[x]$ is a PID). The quotient is the field of 49 elements.

(8) [5] Let F be a field, and let $I = (x, y^2 + x^2)$ be the ideal in $F[x, y]$ generated by the polynomials x and $y^2 + x^2$. Describe the quotient ring $F[x, y]/I$ (i.e. find a simpler-looking ring isomorphic to it). (Hint: think of $F[x, y]/(x)$ first.)

Solution: Here we use the third Isomorphism Theorem: let $\pi : F[x, y] \to F[x, y]/(x)$ be the projection onto the quotient. Let $J = \pi(I)$ be the image of the ideal I in the quotient ring $F[x, y]/(x)$. Then by the third Isomorphism Theorem, we have

$$F[x, y]/I \cong (F[x, y]/(x))/J.$$

Now note that $F[x, y]/(x) \cong F[y]$, and $J = (y^2) \subset F[y]$. Thus, the answer is $F[y]/(y^2)$.

(9)* (extra credit, 3 pts) Suppose we tried to construct a quaternion ring over \mathbb{F}_p by considering expressions $a + bi + cj + dk$ with $a, b, c, d \in \mathbb{F}_p$, and the operations as in the usual quaternion ring (except all the operations with the coefficients are modulo p). Prove that this ring has to contain zero divisors. (Hint: you can quote any theorems proved or even barely mentioned in the course.)
There are several solutions; I meant just a reference to Wedderburn’s Theorem (any finite division ring is a field), which was mentioned in Dummit and Foote but I cannot seem to find it right now).