Math 323. Midterm Exam. February 28, 2013. Time: 75 minutes.
(1) Let $f \in \mathbb{Z}[x]$ be a monic polynomial, and suppose $f(\alpha)=0$ for some $\alpha \in \mathbb{Q}$. Prove that then $\alpha \in \mathbb{Z}$.
(2) (a) Is 13 prime in $\mathbb{Z}[i]$? (If not, factor it into primes).
(b) Prove that any ideal in $\mathbb{Z}[i]$ contains a positive integer.
(c) Let (3) be the ideal generated by the element 3 in $\mathbb{Z}[i]$. Describe the quotient $\mathbb{Z}[i] /(3)$.
(3) Construct a field of 27 elements.
(4) Let $R=\mathbb{Z}\left[\frac{\sqrt{-3}+1}{2}\right]$. Is it true that in the polynomial ring $R[x]$ the prime elements are the same as irreducible elements?
(5) Find an example of an element of $\mathbb{Z}[\sqrt{-5}]$ that is irreducible but not prime. (and give a complete proof that it has this property).
(6) Is the polynomial $x^{6}+30 x^{5}-15 x^{3}+6 x-120$ irreducible in $\mathbb{Q}[x]$?

