MATH 323. Rings and Modules.
Text: Dummit and Foote, "Abstract Algebra".
Section 201, Instructor: Julia Gordon.
Where: BUCH A 202.
When: Tue, Th 9:3011am.
My office: Math 217.
email: gor at math dot ubc dot ca
Office Hours: Tuesdays 11amnoon,
Fridays 1011am, and by
appointment.

Course outline

The policies on marking, etc. can be found here .
 The midterm: In class on Thursday February 16 (this date is
tentative and will be confirmed during the first week of class).
Announcements
 Office hourse starting the week of January 16: Tuesdays
11am12(noon) and Fridays 1011am.
No office hour Friday January 13 (sorry!)
 Please sign up for a Piazza forum. The
signup
link .
The
class
link.
HOMEWORK
There will be weekly homework assignments, posted here every Monday, and
due the following Tuesday.
 Here are some resources if you want to
start using TeX (optional, of course).
Problem set 1 (due Tuesday January 10).
Solutions.
Problem Set 2
(due Thursday Jan. 19).
Problem Set 3 (due Thursday January
26).
Detailed Course outline
Short descriptions of each lecture and relevant additional references will be posted here as we progress.
All section numbers refer to Dummit and Foote.
 Tuesday Jan. 3 :
The basics: motivation, and
properties of the integers from a new perspective (Sections 0.2, 0.3);
Rings  the basic definitions.
 Thursday Jan. 5 :
Basic properties of rings; zero divisors and units. Examples:
function rings, matrix rings, Hamilton's quaternions, and quadratic
integer rings. Reference:
Sections 7.1 and 7.2.
 Tuesday Jan. 10 :
One more example or rings: polynomial rings (from 7.2).
Units in quadratic integer rings.
Here is a
completely optional, and not to be handed in, problem set exploring
solutions to Pell's equation (using continued
fractions), which is equivalent to finding the units in the corresponding
quadratic integer ring.
 Thursday Jan. 12 :
Section 7.3: homomorphisms. The notion of an ideal.
Quotient rings.
Examples of ring homomorphisms from 7.3.
 Tuesday Jan. 17 :
The first isomorphism theorem.
Examples of quotient rings: Q[x]/(x), Q[x]/(x^2+1), Q[x]/(x^25)
(these were discussed in great detail); in particular, we discussed why
the resulting rings are not isomorphic to each other (for that, we
discussed a little the idea of a polnomial equation with integer
coefficients having a solution in a given ring).
Another example: reduction homomorphisms; relationship between having
solutions in Z and solutions modulo n for all integers n.
(see the discussion on p.246 in 7.3).
 Thursday Jan. 19 :
The second, third, and fourth isomorphism theorems, with examples.
Sums and products of ideals.
We finished Section 7.3!
Started 7.4  properties of ideals. The notion of the generating
set for an ideal. Principal ideals.
 Tuesday Jan. 24 :
Section 7.4, continued. Maximal ideals; prime ideals. The
criterion for being prime/maximal. Examples (in Z[x], F[x], and Z[i]).
Section 7.6 "Chinese remainder Theorem".