Math 323: Solutions to Homework 8

Section 10.1. Problem 7. Let $N_1 \subset N_2 \subset \ldots$ be an ascending chain of submodules of M. Prove that $\bigcup_{i=1}^\infty N_i$ is a submodule of N.

Solution. It is clear that this union is non-empty. Then we just need to check that for any $m, n \in \bigcup_{i=1}^\infty N_i$ and $r \in R$ (where R is the ring our modules are over), we have $m + nr \in \bigcup_{i=1}^\infty N_i$ (see the submodule criterion, Proposition 1 in Section 10.1, p.342). So, let m, n and r be be given. By definition of the union, there exists a positive integer j such that $m, n \in N_j$. Then since N_j is a submodule of M, we have $m + nr \in N_j$, and then $m + nr \in \bigcup_{i=1}^\infty N_i$, QED.

Section 10.1 Problem 8. An element m of the R-module M is called a torsion element if $rm = 0$ for some nonzero element $r \in R$. The set of torsion elements is denoted

$$\text{Tor}(M) = \{m \in M \mid rm = 0 \text{ for some nonzero } r \in R\}$$

(a) Prove that if R is an integral domain then $\text{Tor}(M)$ is a submodule of M (called the torsion submodule of M)

Solution. Denote the identity element of M as an additive abelian group by 0. Pick any non-zero $r \in R$. Then, $r0 = r(0 + 0) = r0 + r0$. After cancelling $r0$ from both sides, we get $r0 = 0$. Hence, 0 \in Tor(M) and in particular Tor(M) \neq 0. Assume $x, y \in \text{Tor}(M)$ and $r \in R$. Then, by definition, $r_1 x = 0$ and $r_2 y = 0$ for some non-zero $r_1, r_2 \in R$. Using the hypothesis that R is an integral domain, we know $r_1 r_2$ is a non-zero element in R. Using commutativity of R, we get

$$r_1 r_2 (x + ry) = (r_1 r_2) x + (r_1 r_2) ry = r_2 (r_1 x) + r_1 (r_2 y) = r_2 0 + (r_1 r) 0 = 0 + 0 = 0$$

So $r_1 r_2 (x + ry) = 0$. Since $r_1 r_2$ is non-zero in R, it follows that $x + ry \in \text{Tor}(M)$. By the Submodule Criterion (Proposition 1 in page 342), we conclude that Tor(M) is a submodule of M.

(b) Give an example of a ring R and a R-module M such that Tor(M) is not a submodule.

Solution. Let $R = \mathbb{Z}/10\mathbb{Z}$ and $M = R$ where the action of a ring element on a module element is just the usual multiplication in the ring R (Example 1 in page 338). Note that $\overline{2}$ and $\overline{5}$ are two non-zero elements in R, and that $(\overline{2})(\overline{5}) = (\overline{5})(\overline{2}) = \overline{0}$. By definition, $\overline{2}, \overline{5} \in \text{Tor}(M)$. Now let $x = \overline{5}$, $y = \overline{2}$, and $\overline{r} = \overline{3}$. We have just seen $x, y \in \text{Tor}(M)$. However,

$$x + \overline{r}y = \overline{5} + (\overline{3})(\overline{2}) = \overline{11} = \overline{1}$$

For every non-zero r in R, we have $r\overline{1} = r \neq 0$, and hence $x + \overline{r}y \notin \text{Tor}(M)$. By Submodule Criterion (Proposition 1 in page 342), we conclude that Tor(M) is not a submodule of M.

(c) If R has zero divisors, show that every nonzero R-module has nonzero torsion elements.

Solution: We will prove the claim for left R-modules. The same statement for right R-modules can be similarly proved. Suppose M is a left R-module, and that R has a zero divisor, say $a, b \in R$ such that $ba = 0_R$, where 0_R denotes the zero of R. By definition, a and b are nonzero in R. If $am = 0$ for some nonzero $m \in M$, then $a \in \text{Tor}(M)$ and we are done, because we have found a non-zero torsion element
(namely \(m\)). Otherwise, we may assume that \(am \neq 0\) for all non-zero \(m \in M\). Take any non-zero element of \(M\), say \(m'\). Then \(am' \neq 0\), and

\[
b(am') = (ba)m' = 0_{Rm'} = 0
\]

Since \(b\) is non-zero, we get \(am' \in \text{Tor}(M)\) and we are done, since we have found a non-zero torsion element, namely \(am' \in M\).

Remark: In the solution, we used the fact that \(0_{Rm} = 0\) for \(m \in M\). Here \(0_R\) denotes the zero of \(R\), and 0 denotes the identity element of \(M\) as an additive abelian group. This is easily proven from the module axioms: \(0_{Rm} = (0_R + 0_R)m = 0_Rm + 0_Rm\). Using cancellation in the additive group \(M\), we obtain \(0_{Rm} = 0\).

Section 10.1 Problem 9: If \(N\) is a submodule of \(M\), the annihilator of \(N\) in \(R\) is defined to be \(\{r \in R \mid rn = 0\ \text{for all} \ n \in N\}\). Prove that the annihilator of \(N\) in \(R\) is a 2-sided ideal of \(R\).

Solution: Let \(I_N = \{r \in R \mid rn = 0\ \text{for all} \ n \in N\}\). We want to show that \(I_N\) is a 2-sided ideal of \(R\). Since \(0n = 0\) for all \(n \in N\), it follows that \(0 \in I_N\), so in particular \(I_N \neq \emptyset\). Given \(a, b \in I_N\), we observe that for each \(n \in N\),

\[
(a - b)n = an - bn = 0 - 0 = 0
\]

so that \(a - b \in I_N\), and \(I_N\) is closed under subtraction. Finally, given \(r \in R\) and \(a \in I_N\), we have

\[
(ra)(n) = r(an) = r0 = 0 \quad \text{and} \quad (ar)(n) = a(rn) = 0
\]

for each \(n \in N\). Thus, \(ar \in I_N\) and \(ra \in I_N\). We conclude that \(I_N\) is a two-sided ideal in \(R\).

Section 10.1 Problem 10: If \(I\) is a right ideal of \(R\), the annihilator of \(I\) in \(M\) is defined to be \(\{m \in M \mid am = 0\ \text{for all} \ a \in I\}\). Prove that the annihilator of \(I\) in \(M\) is a submodule of \(M\).

Solution: Let \(N_I = \{m \in M \mid am = 0\ \text{for all} \ a \in I\}\). We want to show that \(N_I\) is a submodule of \(M\). Since \(a0 = 0\) for all \(a \in I\), it follows that \(0 \in N_I\), so in particular \(N_I \neq \emptyset\). Given \(x, y \in N_I\) and \(r \in R\), we obtain that for each \(a \in I\), we have \(ar \in I\) (since \(I\) is an ideal), and so

\[
a(x + ry) = ax + (ar)y = 0 + 0 = 0
\]

Hence, \(x + ry \in N_I\). By Submodule Criterion, \(N_I\) is a submodule of \(M\).

Section 10.1 Problem 11. Let \(M\) be the abelian group (i.e. a \(\mathbb{Z}\)-module) \(\mathbb{Z}/24\mathbb{Z} \times \mathbb{Z}/15\mathbb{Z} \times \mathbb{Z}/50\mathbb{Z}\).

(a) Find the annihilator of \(M\) in \(\mathbb{Z}\) (i.e. a generator for this principal ideal).

Solution: We want to determine all \(r \in \mathbb{Z}\) such that \(rm = 0\) for all \(m \in M\). We can write \(m = (\overline{x}, \overline{y}, \overline{z})\) where \(\overline{x} \in \mathbb{Z}/24\mathbb{Z}\), \(\overline{y} \in \mathbb{Z}/15\mathbb{Z}\) and \(\overline{z} \in \mathbb{Z}/50\mathbb{Z}\). The condition \(rm = 0\) now gives \(r(\overline{x}, \overline{y}, \overline{z}) = (0, 0, 0)\), meaning that \(r\overline{x} = 0\), \(r\overline{y} = 0\) and \(r\overline{z} = 0\). For this to be true for all \(m = (\overline{x}, \overline{y}, \overline{z})\), we need \(r\) to be the least common multiple of 24, 15, 50. Since \(\text{lcm}(24, 15, 50) = 600\), we conclude that the annihilator of \(M\) in \(\mathbb{Z}\) is \((600)\), the principal ideal generated by \(600 \in \mathbb{Z}\).
(b) Let \(I = 2\mathbb{Z} \). Describe the annihilator of \(I \) in \(M \) as a direct product of cyclic groups.

Solution: We are looking for all \(m \in M \) such that \(am = 0 \) for all \(a \in 2\mathbb{Z} \). It is enough to determine all \(m \in M \) such that \(2m = 0 \) (because \(2\mathbb{Z} \) is principal). Write \(m = (x, y, z) \) where \(x \in \mathbb{Z}/24\mathbb{Z}, \ y \in \mathbb{Z}/15\mathbb{Z} \) and \(z \in \mathbb{Z}/50\mathbb{Z} \).

The condition \(2m = 0 \) now gives \(2(x, y, z) = (0, 0, 0) \), meaning that \(2x = 0, 2y = 0 \) and \(2z = 0 \). Or equivalently,

\[
\begin{align*}
2x &= 0 \pmod{24} \\
2y &= 0 \pmod{15} \\
2z &= 0 \pmod{50}
\end{align*}
\]

By rules governing modular arithmetic, the above system is equivalent to

\[
\begin{align*}
x &= 0 \pmod{12} \\
y &= 0 \pmod{15} \\
z &= 0 \pmod{25}
\end{align*}
\]

Hence, \(m = (x, y, z) \in M \) is in the annihilator of \(2\mathbb{Z} \) if and only if the above system is satisfied. Going back to the quotient group, we see that \(m = (x, y, z) \in M \) is in the annihilator of \(2\mathbb{Z} \) if and only if

\[
m \in 12\mathbb{Z}/24\mathbb{Z} \times 15\mathbb{Z}/15\mathbb{Z} \times 25\mathbb{Z}/50\mathbb{Z} \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}
\]

Hence, the annihilator of \(2\mathbb{Z} \) in \(M \) is \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) which is isomorphic to simply \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \).

Section 10.1 Problem 20. Let \(F = \mathbb{R} \), let \(V = \mathbb{R}^2 \) and let \(T \) be the linear transformation from \(V \) to \(V \) which is rotation clockwise about the origin by \(\pi \) radians. Show that every subspace of \(V \) is an \(F[x] \)-submodule for this \(T \).

Solution: We recall that a subspace \(U \subset V \) is called \(T \)-stable if \(T(U) \subset U \). As shown in page 341, \(F[x] \)-submodules of \(V \) are precisely the \(T \)-stable subspaces of \(V \). Hence, we need to prove that every subspace of \(V \) is \(T \)-stable for this particular linear transformation \(T \) (where \(T \) is rotation clockwise about the origin by \(\pi \) radians). We can write \(T \) as

\[
T \left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = \begin{bmatrix} \cos(-\pi) & -\sin(-\pi) \\ \sin(-\pi) & \cos(-\pi) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_1 \\ -x_2 \end{bmatrix} = -1 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\]

So \(T \) is simply scaling the vector by \(-1\), i.e. \(T(v) = -v \) for each \(v \in V \). Consider any subspace \(U \subset V \). Let \(u \in U \). Then, \(T(u) = -u \in U \) since \(U \) is a subspace (and therefore closed under scalar multiplication). Since \(u \) was arbitrary, it follows that \(T(U) \subset U \), implying that \(U \) is a \(T \)-stable subspace of \(V \), and so \(U \) is \(F[x] \)-submodule of \(V \). Since this is true for every subspace \(U \subset V \), the proof is complete.

Section 10.2 Problem 8. Let \(\varphi : M \to N \) be an \(R \)-module homomorphism. Prove that \(\varphi(\text{Tor}(M)) \subset \text{Tor}(N) \).

Solution: We recall the definition of torsion submodule:

\(\text{Tor}(M) = \{ m \in M \mid rm = 0 \text{ for some nonzero } r \in R \} \)
Suppose $x \in \varphi(\text{Tor}(M))$. By definition, $x = \varphi(m)$ for some $m \in \text{Tor}(M)$, meaning that $rm = 0$ for some nonzero $r \in R$. Using the fact that φ is a R-module homomorphism, we obtain

$$0 = \varphi(0) = \varphi(rm) = r\varphi(m) = rx$$

Thus $rx = 0$. Note that $x = \varphi(m) \in N$. Since r is nonzero element in R, from $rx = 0$ we immediately get $x \in \text{Tor}(N)$. As x was arbitrary element of $\varphi(\text{Tor}(M))$, we deduce that $\varphi(\text{Tor}(M)) \subset \text{Tor}(N)$.