Math 323: Extra problems of Number-theoretic flavour

1. Find all integer solutions to $y^{2}+1=x^{3}$ with $x, y \neq 0$ (Hint: use the ring of Gaussian integers $\mathbb{Z}[i])$.
2. Now we can revisit Pell's equation $x^{2}-2 y^{2}= \pm 1$.
(a) Show that there is no unit η in $\mathbb{Z}[\sqrt{2}] \subset \mathbb{R}$ such that $1<\eta<1+\sqrt{2}$
(b) Deduce that every positive unit in $\mathbb{Z}[\sqrt{2}]$ is a power of $\epsilon=1+\sqrt{2}$

Define the n-th cyclotomic polynomial $\Phi_{n}(x)$ by: $\Phi_{1}(x)=x-1$, and for $n>1$,

$$
\Phi_{n}(x)=\frac{x^{n}-1}{\operatorname{lcm}\left(x^{d}-1\right), 0<d<n, d \mid n}
$$

The next few problems are related to the cyclotomic polynomials.
3. (a) Prove that $x^{n-1}+x^{n-2}+\ldots+x+1$ is irreducible over \mathbb{Z} if and only if n is prime.
(b) Prove that for a prime p, the cyclotomic polynomial Φ_{p} is $\Phi_{p}(x)=x^{p-1}+$ $\cdots+x+1$.
4. Let φ denote Euler's φ-function.
(a) Prove that $\operatorname{deg} \Phi_{n}=\varphi(n)$.
(b) Prove the identity $\sum_{d \mid n} \varphi(d)=n$ where the sum is extended over all the divisors d of n.
(c) Prove that $\Pi_{1 \leq d \leq n, d \mid n} \Phi_{d}(x)=\Phi_{n}(x)$.
5. Prove that the cyclotomic polynomial Φ_{5} is irreducible over \mathbb{F}_{p} iff p is not congruent to $1 \bmod 5$ and p^{2} is not congruent to $1 \bmod 5$ (in the first case it factors into linear factors, and in the second case - into quadratic factors).

Note: we know that it is irreducible over \mathbb{Z}, but that does not automatically imply irreducibility $\bmod p$ for any prime $p!$ In fact, this polynomial obviously factors into linear factors over \mathbb{F}_{5}.
6. Construct a field with 81 elements.

