Take-home mid-midterm. Due Wednesday November 18.

Problems:

(1) Let $S \subset \mathbb{R}$ be the set

$$
S=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{Z}, n \geq 1\right\}
$$

Find ∂S - the set of all boundary points of S. Is the set S closed?
(2) Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x \in \mathbb{Q}\right\}$. Find its boundary ∂S.
(3) Using the $\epsilon-\delta$ definition of a continuous function, prove that if $f(x, y)$ is a continuous function on \mathbb{R}^{2}, and $g(t)$ is a continuous function on \mathbb{R}, then $F(x, y)=g(f(x, y))$ is continuous on \mathbb{R}^{2}.
(4) Using $\epsilon-\delta$ definition, prove that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y^{3}}{x^{6}+y^{2}}=0
$$

(5) For each real number r, consider the function defined by

$$
f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right)^{r} \sin \left(\frac{1}{x^{2}+y^{2}}\right) & (x, y) \neq(0,0) \\ 0 & (x, y)=(0,0)\end{cases}
$$

Determine the set of all r such that at $(0,0)$, the function $f(x, y)$ is
(a) continuous
(b) differentiable
(c) continuously differentiable

You do not need to give $\epsilon-\delta$ proofs, but need to justify your answers using the properties of limits, continuous, and differentiable functions.

