Take-home mid-midterm. Due Wednesday November 18.

Problems:
(1) Let \(S \subset \mathbb{R} \) be the set
\[
S = \left\{ \frac{1}{n} \mid n \in \mathbb{Z}, n \geq 1 \right\}.
\]
Find \(\partial S \) – the set of all boundary points of \(S \). Is the set \(S \) closed?

(2) Let \(S = \{(x, y) \in \mathbb{R}^2 \mid x \in \mathbb{Q}\} \). Find its boundary \(\partial S \).

(3) Using the \(\epsilon-\delta \) definition of a continuous function, prove that if \(f(x, y) \) is a continuous function on \(\mathbb{R}^2 \), and \(g(t) \) is a continuous function on \(\mathbb{R} \), then \(F(x, y) = g(f(x, y)) \) is continuous on \(\mathbb{R}^2 \).

(4) Using \(\epsilon-\delta \) definition, prove that
\[
\lim_{(x,y) \to (0,0)} \frac{xy^3}{x^6 + y^2} = 0.
\]

(5) For each real number \(r \), consider the function defined by
\[
f(x, y) = \begin{cases}
(x^2 + y^2)^r \sin \left(\frac{1}{x^2 + y^2} \right) & \text{if } (x, y) \neq (0, 0) \\
0 & \text{if } (x, y) = (0, 0)
\end{cases}
\]
Determine the set of all \(r \) such that at \((0,0) \), the function \(f(x, y) \) is
(a) continuous
(b) differentiable
(c) continuously differentiable
You do not need to give \(\epsilon-\delta \) proofs, but need to justify your answers using the properties of limits, continuous, and differentiable functions.