
Detailed solution to Problem 33, Section 10.1

We need to find (a) the interior points and (b) the boundary points of the set
S = {(x, y) ∈ R

2|0 < x2 + y2 < 1}.
First, some discussion (to set up the language – there were some problems with

language in the homework): the unit circle is defined by the equation x2 + y2 = 1.
Not that the circle itself, as a set, is very ‘thin’, it consists only of the points that
are precisely at distance 1 from (0, 0). Everything ‘inside’ it, that is, the points
whose distance from (0, 0) is less than 1, should not be called ‘circle’; it is called
the disc of radius 1 centred at (0, 0). (In higher dimension, we would call this a
ball, and its boundary – a sphere. In short, the disc has area, the ball has volume,
but the circle does not have any area, and the sphere does not have any volume, or
more precisely, they have area (respectively, volume) zero.).

With this terminology, our set S is an open disc centred at (0, 0) with the

origin removed from it.

Now we can discuss the solution of the problem.
Solution.

1. Interior points. First, let us prove that Int(S) = S, that is, that every point
of the set S is an interior point. For that, we need to prove that for every point
s = (x0, y0) ∈ S, there exists a disc which we will call Bs,r of some radius r, centred
at (x0, y0), that is contained in S entirely.1 So, we are given (x0, y0) and we need
to find the r that would work. If you draw a picture, you would see that any r that
is smaller than the distance from s to the unit circle, and smaller than the distance
from s to the origin, would work. But to be safe, let us take half that number: let
r = min(1−d

2
, d
2
), where d =

√

x2
0 + y20 is the distance from (x0, y0) to the origin.

Note that d > 0, because the origin itself is not in S, so our r is positive. Now that
we chose r, we want to prove that Bs,r ⊂ S. This means that we need to prove
that for any point p = (x, y) ∈ Bs,r, we have 0 < x2 + y2 < 1.

So, at this point, we are investigating the point p = (x, y), and we know that
the distance d(p, s) from p to our point s = (x0, y0) is less than r; and we want to
prove that the distance from p to (0, 0) is greater than 0 but less than 1. Let us

denote this distance by d(p) (so d(p) =
√

x2 + y2). We need to show

0 < d(p) < 1.

First, note that d(p) cannot be zero: if it was, we would have that p = (0, 0). But
then the distance from p to s would be d, but because r is not greater than d/2,
we know that the distance from p to s is not greater than d/2, which creates a
contradiction. Thus, d(p) > 0. Now let us show that d(p) is less than 1. By the
triangle inequality, we have:

d(p) ≤ d(p, s) + d.

Sine p is in the ball of radius r around s, we know that d(p, s) < r, and by our
choice of r, we have r < 1−d

2
. Then

d(p, s) + d <
1− d

2
+ d =

1 + d

2
.

1Note that using the logic shorthand notation, we could write this sentence as:

∀s = (x0, y0) ∈ S, ∃r > 0 s.t. Bs,r ⊂ S.
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Since the point s is in the set S, we have d < 1, then 1+d
2

< 1. Thus we have proved
that d(p) < 1. This completes the proof that the entire ball Bs,r is contained in S,
and thus we have proved that s is an interior point. Since s was an arbitrary point
of S, we have completed the proof that Int(S) ⊇ S, but since every interior point
is automatically in S, we have Int(S) = S.

2. Boundary points. The boundary of S is the set

∂S = {(x, y) | x2 + y2 = 1} ∪ {(0, 0)}.

This is saying that the set of boundary points of S is the unit circle and the origin.
(Note that we already proved in class that the unit circle is the boundary of the disc
of radius 1; but anyway, let us do it a bit differently here, using what we already
proved about interior points).

Note a very important fact: if Int(S) is the set of interior points of S, and Ext(S)
is the set of exterior points of S, then the boundary of S is the complement of the

union of these two sets : symbolically, we can writ this as:

∂S = (Int(S) ∪ Ext(S))c = R
2 \ (Int(S) ∪ Ext(S)).

You should be able to prove this from the definitions. Try it, and only

then look at the footnote below that contains this proof. 2

Now, we can prove that Ext(S) = {(x, y) | x2 + y2 > 1} exactly the same way as
we did the proof for Int(S) (in fact, we also proved this in class). This leaves the
boundary to be the answer above: the unit circle and the origin. (Of course, you
could have checked this directly). Note that the origin does satisfy the definition
of a boundary point for S: any small neighbourhood of it consists of the points of
S, except the origin itself is in Sc !

3. Openness: The set S is open because every point is an interior point, as we
proved above.

2Proof of the fact that ∂S = (Int(S) ∪ Ext(S))c: in words, this says, that the point s is a
boundary point precisely when it is neither an interior point nor an exterior point. Our statement
is saying that the plane is divided into three non-overlapping sets: Int(S), Ext(S), and ∂S.

Here is a formal proof: By definition, s ∈ Int(S) ∪ Ext(S) if and only if

(∃r > 0 s.t. Bs,r ⊂ S) or (∃r > 0 s.t. Bs,r ⊂ Sc).

Then the complement (Int(S) ∪ Ext(S)c is defined by the negation of this condition. Now, let us
negate the statement. We get:

(∀r > 0 Bs,r 6⊂ S) and (∀r > 0 Bs,r 6⊂ Sc),

but this means precisely that for any ball Bs,r centred at s, this ball contains both points of S

and points of Sc, which is precisely the definition of the boundary point!


