Reminder:
- Review session Wed Dec 9 3-5 pm in Math 203.
- Office hours:
 - Thurs Dec 10 noon - 2 pm
 - Fri Dec 11 noon - 2 pm
- Will post review materials
- Will have E-S limit.
- Differentiable —
- Also look at Math 200/253 finals.

Cylindrical and spherical coordinates

Recall: can think about an SSS as
a double integral inside a single integral,
or as a single integral inside a double.

$SSSS (f) dA$ or $\int (SS) dA) dx$

I could convert the double integral to polar coordinates.

Th. 3 cylindrical coordinates:

(x, r, Θ, z) or (x, r, Θ) or (y, r, Θ)

x is itself y (right-hand):

\[x = r \cos \Theta \]
\[y = r \sin \Theta \]
\[z = z \]

z is z:

Θ is Θ:

Θ is Θ:

(check - is h_2 h_1 right orientation?)
Example: Find the volume between two paraboloids
\[z = x^2 + y^2 + 1, \quad z = 2(x^2 + y^2) \]

Method 1: Find the domain \(D \) in the \(xy \)-plane that is the projection of our solid

\[
V = \iiint_D (x^2 + y^2 + 1) \, dA - \iiint_D (2x^2 + 2y^2) \, dA.
\]

We can see that polar coordinates are useful.

Method 2:
\[
V = \iiint_E 1 \, dV = \iiint_D \frac{r^2 + 1}{2r^2} \, dA.
\]

\[
= \int_0^{2\pi} \int_0^1 \int_{r^2}^{r^2 + 1} dz \, r \, dr \, d\theta.
\]

(To find \(\partial D \), we need the radius of the circle of intersection of the paraboloids.)

\[z = 2x^2 + 2y^2 = x^2 + y^2 + 1 \rightarrow \text{circle of intersection} \]

\[x^2 + y^2 = 1 \]

So it is a circle of radius 1 (lying in the plane \(z = 2 \)).
Comment: $(x, y, z) \rightarrow (r, \Theta, \phi)$

There is Jacobian formula for integrals in 3D:

so $\, dx\, dy\, dz = \left| \begin{array}{ccc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \Theta} & \frac{\partial x}{\partial \phi} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \Theta} & \frac{\partial y}{\partial \phi} \\ \frac{\partial z}{\partial r} & \frac{\partial z}{\partial \Theta} & \frac{\partial z}{\partial \phi} \end{array} \right| \, dr\, d\Theta\, d\phi$

abs. value of Jacobian

\begin{bmatrix} \cos \Theta & -r \sin \Theta & 0 \\ \sin \Theta & r \cos \Theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = r.

Spherical coordinates

$f = \sqrt{x^2 + y^2 + z^2} = \text{distance from } (0, 0, 0)$

"rho"

$\phi = \text{"latitude"}$

$0 \leq \phi \leq \pi$

(\text{in geography:} \phi \text{ is measured from the equator,} -\frac{\pi}{2} \leq \phi \leq \frac{\pi}{2})

In math, ϕ is measured from the North Pole.

On the latitudinal circle, Θ measures the angle with positive direction of x-axis.

$0 \leq \Theta \leq 2\pi$

$x = f \sin \phi \cos \Theta$

$y = f \sin \phi \sin \Theta$

$z = f \cos \phi$

Sanity check: $x^2 + y^2 + z^2 = f^2.$
Exercise: how to express dV?

General answer:

\[
\begin{vmatrix}
\frac{\partial x}{\partial \phi} & \frac{\partial x}{\partial \rho} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \phi} & \frac{\partial y}{\partial \rho} & \frac{\partial y}{\partial \theta} \\
\frac{\partial z}{\partial \phi} & \frac{\partial z}{\partial \rho} & \frac{\partial z}{\partial \theta}
\end{vmatrix} = \rho^2 \sin \phi \, d\phi \, d\rho \, d\theta
\]

Example: mass of the piece of a sphere above the cone of angular measure $\frac{\pi}{3}$ of radius 5.

Density function

\[d(x,y,z) = xyz\]

\[
\int_0^{\pi/3} \int_0^{\sqrt{25 - z^2}} \int_0^{\sqrt{25 - z^2 - x^2}} z \, x \, y \, \rho^2 \sin \phi \, d\phi \, d\rho \, dz
\]
Cones in cylindrical coordinates

\[\tan \psi = \frac{r}{z} \]

Cones in cylindrical coords are given by "linear" equation

\[r = c z \]

\[\frac{r}{z} \]

tangent of the angle
defining the cone.