Today: improper integrals
Mean Value Thm (14.3)
More examples from 14.4.

Towards Mean Value Thm:

Recall: Area(D) = \(\iint_D 1 \, dA \).

Def: Average value of \(f(x,y) \) over a domain \(D \)
\[\frac{1}{\text{area}(D)} \iint_D f(x,y) \, dA. \]

(Why it makes sense: average of \(f \) over two
points \((x_1, y_1), \ldots, (x_n, y_n) \)
should be \(\frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i) \).

Subdivide \(D \) into equal rectangles
say of area \(\Delta A \)

\[
\frac{1}{n^2 \Delta A} \sum_{i=1}^{n} \sum_{j=1}^{n} \Delta A \cdot f(x_i, y_j) = \frac{1}{n^2 \Delta A} \sum_{i=1}^{n} \sum_{j=1}^{n} f(x_i, y_j) \quad \text{(Riemann sum of the}
\iint_D f(x,y) \, dA).
\]

Claim: \(\text{Area}(D) = \lim_{n \to \infty} (n^2 \Delta A) \).
Again: why $\text{Area}(D) = \int \int_\text{d}A$.

Area $\approx \text{(area of a rectangle)} \cdot \text{their number}$.

To get an overestimate, count all that have a point in D.

To get an underestimate, count only the ones entirely in D.

As the size of \vp goes to 0, the difference goes to 0.

If the boundary of D is nice enough: smooth is sufficient.

Characteristic function of D.

\[f(x, y) = \begin{cases} 1 & \text{if } (x, y) \in D \\ 0 & \text{otherwise} \end{cases} \]
Estimating integrals:

\[m \leq f(x,y) \leq M \quad \forall \quad (x,y) \in D. \]

Then

\[m \cdot \text{Area}(D) \leq \iint_D f(x,y) \, dA \leq M \cdot \text{Area}(D). \]

(Generally, if \(f(x,y) \leq g(x,y) \) on \(D \)

\[\iint_D f(x,y) \, dA \leq \iint_D g(x,y) \, dA \]

because this is true for Riemann sums.

Mean Value Theorem for Integrals

\(D \) - closed, connected, bounded domain; \(f \) continuous on \(D \).

\[A, \ B \in D. \]

\[A \rightarrow B \]

can get from \(A \) to \(B \) inside \(D \)

Then there exists \((x_0,y_0) \in D\) such that

\[f(x_0,y_0) = \text{average value of } f \text{ over } D = \frac{1}{\text{Area}(D)} \iint_D f(x,y) \, dA. \]

Proof: Let \(m = \min_{(x,y) \in D} f(x,y) \), \(M = \max_{(x,y) \in D} f(x,y) \).

(both exist \(\because D \) is closed, bounded, \(f \) is continuous).
Then $m \leq A(f) \leq M$.

Let (x_1, y_1) be the point where f attains its minimum value.

(x_2, y_2) is the point where f attains its maximum value.

Then there is a path in D connecting (x_1, y_1) and (x_2, y_2).

Let $f(x, y)$ be continuous, so by intermediate value theorem, there is (x_0, y_0) on this path where $f(x_0, y_0) = A(f)$.

Corollary: Every object has a center of mass!

Imagine a metal plate of variable density.

![A metal plate with density function $f(x, y)$ and mass, area, and density concepts illustrated.]

Total mass $= \iint_D f(x, y) \, dA$

The coordinates of the center of mass are (\bar{x}, \bar{y}):

\[
\bar{x} = \frac{1}{\text{mass}(D)} \iint_D x \, f(x, y) \, dA
\]

\[
\bar{y} = \frac{1}{\text{mass}(D)} \iint_D y \, f(x, y) \, dA
\]

\[
\text{mass}(D) = \iint_D f(x, y) \, dA
\]
Why should these formulas make sense:

centre of mass = \(\frac{x_1 m_1 + x_2 m_2}{m_1 + m_2} \)

= "weighted average" of \(x_1 \) and \(x_2 \).

\[
\text{centre of mass} = \frac{\int_a^b x f(x) \, dx}{\int_a^b f(x) \, dx}
\]

intuition: mass of a small interval around \(x \) \(\approx \frac{f(x) \, dx}{dx} \)

Our formulas are 2-variable version of this.

Next: improper integrals.

\[
\int_{-\infty}^{\infty} e^{-x^2} \, dx
\]

next time.