
Written assignment 4. Due Wednesday November 25.

Review of gradients, Jacobians, Chain Rule, and the Implicit Function

Theorem.

(1) Suppose it is given that the direction of the fastest increase of a function
f(x, y) at the origin is 〈1, 2〉. Find a unit vector u that is tangent to the
level curve of f(x, y) that passes through the origin.

Solution. The direction of the fastest increase of a function f at a point
is the direction of the gradient of f at that point. Thus, the gradient of
f(x, y) at the origin has the same direction as the vector 〈1, 2〉. We also
know that the gradient is orthogonal to the level curve passing through our
point. Thus, the unit vectors tangent to the level curve passing though the
origin are ±〈−2/

√
5, 1/

√
5〉.

(2) (From an old final exam) The shape of the hill is given by z = 1000 −
0.1x2 − y2. Assume that the x-axis is pointing East, and the y-axis is
pointing North, and all distances are in metres.
(a) What is the direction of the steepest ascent at the point (0, 20, 600)?

(The answer should be in terms of directions of the compass).
Solution. The compass direction of the steepest ascent at the given
point is the direction of the gradient of f(x, y) = 1000 − 0.1x2 − y2

at (0, 20). Evaluate this gradient. We have: ∇f = 〈−0.2x,−2y〉, at
(0, 20) we get ∇f |(0,20) = 〈0,−40〉, which points strictly South.

(b) What is the slope of the hill in the direction from (a)?
Solution. The slope is the rate of change of height in this direction,
i.e. the directional derivative Duf at (0, 20) where u is the unit vector
pointing South, i.e. u = 〈0,−1〉. We get:

Duf = ∇f · u = 〈0,−40〉 · 〈0,−1〉 = 40.

This means that if you are trying to walk on this hill in the South
direction, you ascend 40m per horizontal metre. Which actually shows
that this ”hill” is much more suitable for rock climbing than bike
riding... (in reality something with this slope certainly appears as a
completely vertical cliff). Oops.

(c) If you ride a bicycle on this hill in the direction of the steepest descent
at 5 m/s, what is the rate of change of your altitude (with respect to
time) as you pass through the point (0, 20, 600)?
Solution. Ignoring the issue with realism noted above, if you somehow
were riding a bike off this cliff at 5 m/s along the path of the steepest
descent (which is North), then your speed would have had two compo-
nents: the horizontal component vxy and the vertical component vz.
(This part is similar to the faulty webwork problem discussed earlier).
We need to find |vz |. We have: |vz| = 40|vxy|, because v has to be
tangent to the path, and so the ratio of |vz | and |vxy| has to be the
slope we found above. And also, |vxy|2 + |vz|2 = 25. Thus we get:
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1601|vxy|2 = 25, so

|vxy| =
5√
1601

, and |vz | =
200√
1601

.

(3) Let f : R3 → R
3 be defined by f(r, θ, z) = (x, y, z), where x = r cos(θ),

y = r sin(θ), z = z (the cylindrical coordinates transformation, which we
will use for computing integrals later). Find its Jacobian matrix (it should
be a 3× 3-matrix).

Solution. This has appeared in the last lecture. The answer is




cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0
0 0 1



 .

(4) Let g(x, y, z) = (x2 + y2, x/y, 3z). Let f(r, θ, z) be the transformation from
the previous problem. Find the Jacobian matrix of the transformation
g(f(r, θ, z)) in two ways: directly by finding the formula for this composition
of transformations, and also by multiplying the Jacobian matrices of f and
of g (i.e., by using the Chain Rule). (Hint: it should be diagonal).

Solution. By the Chain rule, the Jacobian matrix of the combined
transformation is the product of their Jacobian matrices: D(g◦f) = DgDf .
The Jacobian matrix of g is:





2x 2y 0
1/y −x/y2 0
0 0 3.



 .

Combining this with the result from the previous problem, we get:




2x 2y 0
1/y −x/y2 0
0 0 3









cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0
0 0 1



 .

Now since (x, y, z) = f(r, θ, z), we substitute the corresponding expressions
for x, y, z, and get:





2r cos(θ) 2r sin(θ) 0
1

r sin(θ) − cos(θ)
r sin2(θ)

0

0 0 3









cos(θ) −r sin(θ) 0
sin(θ) r cos(θ) 0
0 0 1



 =







2r 0 0

0 −1− cos2(θ)
sin2(θ)

0

0 0 3






.

Note: there is a much simpler solution in this case, by evaluation the
composite map directly: note that x2 + y2 = r2, and x/y = cot(θ), and so
g(f(r, θ, z)) = (r2, cot(θ), 3z), and so its Jacobian matrix should be diagonal
with the diagonal entries being the derivatives of r2, cot(θ), and 3z, which
is exactly the matrix we computed above. Note, however, that in general
you cannot expect such simple formulas, and so you need to know how to
use Chain rule and understand every step of the above solution.
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(5) (Problem 14 on p.744) The equations F (x, y, z) = 0 and G(x, y, z) = 0
together can define any two of the variables x, y and z as functions of the
remaining variable. Show that

dx

dy

dy

dz

dz

dx
= 1.

Solution. Consider our system of equations
{

F (x, y, z) = 0

G(x, y, z) = 0

and differentiate both equations with respect to x, keeping in mind that
this system defines y and z as implicit functions of x, so every time we see
y or z, we need to use chain rule. We get:

{

∂F
∂x

+ ∂F
∂y

dy
dx

+ ∂F
∂z

dz
dx

= 0
∂G
∂x

+ ∂G
∂y

dy
dx

+ ∂G
∂z

dz
dx

= 0.

We got a system of linear equations, where dy
dx

and dz
dx

are unknowns. We
can solve it:
{

∂F
∂y

dy
dx

+ ∂F
∂z

dz
dx

= −∂F
∂x

∂G
∂y

dy
dx

+ ∂G
∂z

dz
dx

= −∂G
∂x

,
so

[

dy
dx
dz
dx

]

=

[

∂F
∂y

∂F
∂z

∂G
∂y

∂G
∂z

]

−1
[

−∂F
∂x

−∂G
∂x

]

Note that the matrix whose inverse appears is the Jacobian matrix of this

system of equations : the partial derivatives of F and G with respect to the
variables y and z which we have decided are dependent variables. Let’s use
the notation Fx instead of ∂F

∂x
to make the solution simpler, and explicitly

invert the Jacobian matrix. We get:

dy

dx
= −FxGz − FzGx

FyGz − FzGy

;
dz

dx
= −FyGx − FxGy

FyGz − FzGy

.

Before we proceed with the solution, three remarks:

(a) In the book, there is the notation ∂(F,G)
∂(x,z) to denote the determinant of

a matrix or partial derivatives of the functions F and G with respect
to the variables x, z. Then our answer would be written as:

dy

dx
= −

∂(F,G)
∂(x,z)

∂(F,G)
∂(y,z)

,

which is precisely the kind of ratio that appears in the Implicit Func-
tion theorem.

(b) Since here y and z are implicit functions of a single variable, we use

the notations dy
dx
, dz

dx
rather than ∂y

∂x
.

(c) Unlike the situation in 2 dimensions where x, y are defined as implicit
functions of each other by a single equation F (x, y) = 0, and where we

have dy
dx

= 1
dx
dy

, here this relation does not hold, because all three vari-

ables x, y, z are ”interdependent”, and the second equation G(x, y, z)
participates in the derivatives, so all we get is the relation we are trying
to prove in this problem, relating all three derivatives dx

dy
, dy

dz
, dz

dx
.
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Anyway, now we can proceed with the solution. In the same way, we get

dy

dz
= −

∂(F,G)
∂(z,x)

∂(F,G)
∂(y,x)

= −FxGz − FzGx

FxGy − FyGx

,

dx

dy
= −

∂(F,G)
∂(y,z)

∂(F,G)
∂(x,z)

= −FyGz − FzGy

FxGz − FzGx

.

Multiplying all these together, we get −1.

(6) (modified Problem 15 on p.744) The equations
{

x = u3 − uv

y = 3uv + 2v2

define u and v implicitly as functions of x and y near the point P where
(u, v, x, y) = (−1, 2, 1, 2).
(a) Let F (x, y, u, v) = u3 − uv − x, and G(x, y, u, v) = 3uv + 2v2 − y (the

functions defining the two equations above). Write down the Jacobian
matrix (differentiating the equations with respect to the variables u

and v which we have decided to consider ”dependent”):
[

∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

]

.

Answer:
[

∂F
∂u

∂F
∂v

∂G
∂u

∂G
∂v

]

=

[

3u2 −u
3v 3u+ 4v

]

.

(b) Find ∂u
∂x

and ∂u
∂y

at P (hint: use the answer form (a): you should see

the inverse of this matrix).
Solution: We could differentiate our system of equations implicitly
with respect to x, and every time we see u and v, think of them as
implicit functions of x and y (the same method as in the previous
problem and as what we did in class). We would get the system of
linear equations on ∂u

∂x
and ∂v

∂x
, and the matrix of this system is the

Jacobian matrix we computed in (a):
[

3u2 −u
3v 3u+ 4v

] [

∂u
∂x
∂v
∂x

]

=

[

1
0

]

.

(Make sure that you know how we got this – do the differentiation!)
Then

[

∂u
∂x
∂v
∂x

]

=

[

3u2 −u
3v 3u+ 4v

]

−1 [
1
0

]

.

Plugging in P (whose (u, v)-coordinates are (−1, 2), we get:
[

∂u
∂x

|P
∂v
∂x

|P

]

=

[

3 1
6 5

]

−1 [
1
0

]

=
1

9

[

5 −1
−6 3

] [

1
0

]

=

[

5/9
−2/3

]

.

Similarly for the y-partials:
[

∂u
∂y

|P
∂v
∂y

|P

]

=

[

3 1
6 5

]

−1 [
0
1

]

=
1

9

[

5 −1
−6 3

] [

0
1

]

=

[

−1/9
1/3

]

.
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(c) Find the approximate value of u when x = 1.02 and y = 1.97.
Solution. We are using the fact that we are near the point P , so
u0 = −1, v0 = 2 (the values of u, v at P ). Using the usual formula for
the linearization of a function, we have

u ∼ u0 +
∂u

∂x
|P∆x+

∂u

∂y
|P∆y = −1 +

5

9
· 0.02− 19

· (−0.03).

(7) (modified Problem 16 on p.744) The equations
{

u+ v = x2 + y2

u− v = x2 − 2xy2

define x and y implicitly as functions of u and v for values of (x, y) near
(1, 2), and values of (u, v) near (−1, 6).

(a) Find ∂x
∂u

and ∂y
∂u

at (u, v) = (−1, 6).
Hint: write down the Jacobian matrix, differentiating the equations
with respect to the dependent variables x and y in this case, as in the
previous problem.
Solution. This problem is exactly the same as the previous one,
except here the variables that we want to consider dependent are called
x, y, and also the ”independent” variables u, v are a bit more involved
in the function, affecting the right-hand side of the linear system we
need to solve. We have (make sure you understand how to get here!)

[

∂x
∂u
∂y
∂u

]

=

[

2x 2y
2x −4xy

]

−1 [
1
1

]

.

Plugging in our point (where (x, y) = (1, 2)), we get:
[

∂x
∂u

|P
∂y
∂u

|P

]

=

[

2 4
2 −8

]

−1 [
1
1

]

.

You should be able to finish it from here.
(b) If z = ln(y2 − x2), find ∂z

∂u
at (u, v) = (−1, 6).

Hint: use chain rule.
Solution. Again, as in the previous problem, once we found the
partials of our implicit function, we can use them the way we usually
use partials. One thing to note is that when (u, v) = (−1, 6), we have
(x, y) = (1, 2) – this is the point on whose neighbourhood we have
interpreted x and y as implicit functions of u and v.
Here we have, by chain rule,

∂z

∂u
= − 2x

y2 − x2

∂x

∂u
+

2y

y2 − x2

∂y

∂u
.

Now just plug in (x, y, u, v) = (1, 2,−1, 6) and the partials ∂x
∂u

, ∂y
∂u

from
(a).


